从零到一:分布式缓存技术初探

本文涉及的产品
传统型负载均衡 CLB,每月750个小时 15LCU
网络型负载均衡 NLB,每月750个小时 15LCU
应用型负载均衡 ALB,每月750个小时 15LCU
简介: 分布式缓存通过将数据存储在多个节点上,利用负载均衡算法提高访问速度、降低数据库负载并增强系统可用性。常见产品有Redis、Memcached等。其优势包括性能扩展、高可用性、负载均衡和容错性,适用于页面缓存、应用对象缓存、状态缓存、并行处理、事件处理及极限事务处理等多种场景。

一、什么是分布式缓存?


添加图片注释,不超过 140 字(可选)


分布式缓存是将缓存数据存储在多个节点上,并通过负载均衡算法将请求分发到不同的节点的缓存系统。分布式缓存具有以下优势:

  • 提高数据访问速度:分布式缓存将数据存储在内存中,可以直接访问,而无需访问数据库等后端存储系统,因此可以提高数据访问速度。
  • 降低数据库负载:分布式缓存可以将频繁访问的数据缓存起来,减少对数据库的访问,从而降低数据库负载。
  • 提高系统可用性:分布式缓存可以通过负载均衡算法将请求分发到不同的节点,从而提高系统可用性。

以下是一些常见的分布式缓存产品:


添加图片注释,不超过 140 字(可选)


  • Redis
  • Memcached
  • MongoDB

二、为什么需要分布式缓存?

为什么需要分布式缓存呢?:

分布式缓存是为了解决单一节点缓存带来的一些限制和问题而引入的。以下是一些使用分布式缓存的主要原因:

性能扩展:

单一节点的缓存有容量限制,一旦达到容量上限,就需要考虑扩展。分布式缓存允许将缓存数据分散存储在多个节点上,从而提供更大的缓存容量和更好的性能扩展。

高可用性:

单一节点的缓存存在单点故障的风险,一旦该节点发生故障,整个缓存服务可能不可用。分布式缓存通过在多个节点上存储数据,提高了系统的可用性。即使某个节点不可用,其他节点仍然可以提供服务。

负载均衡:

分布式缓存可以通过在多个节点上均匀分布数据,实现负载均衡。这确保了缓存服务在各个节点上的负载相对均衡,避免了某个节点成为瓶颈。

容错性:

分布式缓存可以通过在多个节点上复制数据,提高容错性。即使某个节点发生故障,备份节点上的数据仍然可用。

地理分布:

在全球范围内分布式缓存可以加速对于特定地理区域的请求。将缓存数据分布到接近用户的节点上,减少数据传输的延迟,提高访问速度。

灵活性和可扩展性:

分布式缓存系统通常具有良好的可扩展性,可以根据需要动态添加或移除节点。这种灵活性使系统更容易适应变化的负载和需求。

三、分布式缓存使用场景有哪些?

分布式缓存的典型应用场景有:

  • 页面缓存:用来缓存Web 页面的内容片段,包括HTML、CSS 和图片等,多应用于社交网站等;
  • 应用对象缓存:缓存系统作为ORM 框架的二级缓存对外提供服务,目的是减轻数据库的负载压力,加速应用访问;
  • 状态缓存:缓存包括Session 会话状态及应用横向扩展时的状态数据等,这类数据一般是难以恢复的,对可用性要求较高,多应用于高可用集群;
  • 并行处理:通常涉及大量中间计算结果需要共享;
  • 事件处理:分布式缓存提供了针对事件流的连续查询 (continuous query)处理技术,满足实时性需求;
  • 极限事务处理:分布式缓存为事务型应用提供高吞吐率、低延时的解决方案,支持高并发事务请求处理,多应用于铁路、金融服务和电信等领域;
相关实践学习
SLB负载均衡实践
本场景通过使用阿里云负载均衡 SLB 以及对负载均衡 SLB 后端服务器 ECS 的权重进行修改,快速解决服务器响应速度慢的问题
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
目录
相关文章
|
12天前
|
数据采集 存储 缓存
如何使用缓存技术提升Python爬虫效率
如何使用缓存技术提升Python爬虫效率
|
20天前
|
分布式计算 大数据 数据处理
技术评测:MaxCompute MaxFrame——阿里云自研分布式计算框架的Python编程接口
随着大数据和人工智能技术的发展,数据处理的需求日益增长。阿里云推出的MaxCompute MaxFrame(简称“MaxFrame”)是一个专为Python开发者设计的分布式计算框架,它不仅支持Python编程接口,还能直接利用MaxCompute的云原生大数据计算资源和服务。本文将通过一系列最佳实践测评,探讨MaxFrame在分布式Pandas处理以及大语言模型数据处理场景中的表现,并分析其在实际工作中的应用潜力。
57 2
|
2月前
|
监控 算法 网络协议
|
2月前
|
供应链 算法 安全
深度解析区块链技术的分布式共识机制
深度解析区块链技术的分布式共识机制
62 0
|
3月前
|
存储 缓存 数据库
缓存技术有哪些应用场景呢
【10月更文挑战第19天】缓存技术有哪些应用场景呢
|
3月前
|
存储 缓存 运维
缓存技术有哪些优缺点呢
【10月更文挑战第19天】缓存技术有哪些优缺点呢
|
3月前
|
人工智能 文字识别 Java
SpringCloud+Python 混合微服务,如何打造AI分布式业务应用的技术底层?
尼恩,一位拥有20年架构经验的老架构师,通过其深厚的架构功力,成功指导了一位9年经验的网易工程师转型为大模型架构师,薪资逆涨50%,年薪近80W。尼恩的指导不仅帮助这位工程师在一年内成为大模型架构师,还让他管理起了10人团队,产品成功应用于多家大中型企业。尼恩因此决定编写《LLM大模型学习圣经》系列,帮助更多人掌握大模型架构,实现职业跃迁。该系列包括《从0到1吃透Transformer技术底座》、《从0到1精通RAG架构》等,旨在系统化、体系化地讲解大模型技术,助力读者实现“offer直提”。此外,尼恩还分享了多个技术圣经,如《NIO圣经》、《Docker圣经》等,帮助读者深入理解核心技术。
SpringCloud+Python 混合微服务,如何打造AI分布式业务应用的技术底层?
|
4月前
|
存储 缓存 NoSQL
解决Redis缓存击穿问题的技术方法
解决Redis缓存击穿问题的技术方法
85 2
|
4月前
|
存储 缓存 Java
在Spring Boot中使用缓存的技术解析
通过利用Spring Boot中的缓存支持,开发者可以轻松地实现高效和可扩展的缓存策略,进而提升应用的性能和用户体验。Spring Boot的声明式缓存抽象和对多种缓存技术的支持,使得集成和使用缓存变得前所未有的简单。无论是在开发新应用还是优化现有应用,合理地使用缓存都是提高性能的有效手段。
60 1
因为一个问题、我新学了一门技术 ElasticSearch 分布式搜索
这篇文章讲述了作者因为一个检索问题而学习了ElasticSearch技术,并分享了排查和解决ElasticSearch检索结果与页面展示不符的过程。
因为一个问题、我新学了一门技术 ElasticSearch 分布式搜索
下一篇
开通oss服务