机器学习原理与实战 | K-means聚类算法实践

简介: 机器学习原理与实战 | K-means聚类算法实践
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np


1. K-均值算法介绍


from sklearn.datasets import make_blobs
# 产生聚类数据集
X, y = make_blobs(n_samples=200,  # 样本数
                  n_features=2,   # 特征数,决定了x的维度
                  centers=4,      # 产生数据的中心端数量,也就是会分成4类
                  cluster_std=1,  # 数据集的标准差
                  center_box=(-10.0, 10.0),   # 设定的数据边界
                  shuffle=True,  # 洗牌操作
                  random_state=1) # 随机数种子,不同的种子产出不同的样本集合
X.shape, y.shape, np.unique(y)
((200, 2), (200,), array([0, 1, 2, 3]))


查看样本的分类情况


plt.figure(figsize=(6,4), dpi=100)
# plt.xticks(())
# plt.yticks(())
plt.scatter(X[:, 0], X[:, 1], s=10, marker='o');


image.png

使用KMeans模型来拟合,这里设置类别个数为3,并计算出其拟合后的成本。


from sklearn.cluster import KMeans
k = 3
# 构建模型
kmean = KMeans(n_clusters=k)
# 训练
kmean.fit(X)
# 打印出得分信息
print("kmean: k={}, cost={}".format(k, int(kmean.score(X))))
kmean: k=3, cost=-668


KMeans.score()函数计算K-均值算法拟合后的成本,用负数表示,其绝对值越大,说明成本越高。本质上,K-均值算法成本的物理意义为训练样本到其所属的聚类中心的距离平均值,在scikit-learn里,其计算成本的方法略有不同,它是计算训练样本到其所属的聚类中心的距离的总和。


查看聚类算法的拟合效果


labels.shape, centers.shape
((200,), (3, 2))
centers
array([[-1.54465562,  4.4600113 ],
       [-8.03529126, -3.42354791],
       [-7.15632049, -8.05234186]])
# 这里得出聚类后预测的分类
labels = kmean.labels_
# 得到3个聚类的中心点
centers = kmean.cluster_centers_
# 设定格式
markers = ['o', '^', '*']
colors = ['r', 'b', 'y']
plt.figure(figsize=(6,4), dpi=100)
# 不显示坐标数值
plt.xticks(())
plt.yticks(())
# 画样本
for c in range(k):
    # 得到每一类的样本集
    cluster = X[labels == c]
    # 画出散点图
    plt.scatter(cluster[:, 0], cluster[:, 1], marker=markers[c], s=10, c=colors[c])
# 画出中心点
plt.scatter(centers[:, 0], centers[:, 1], marker='o', c="white", alpha=0.9, s=300)
# 按数字标点
for i, c in enumerate(centers):
    plt.scatter(c[0], c[1], marker='$%d$' % i, s=50, c=colors[i])

image.png


把画出K-均值聚类结果的代码稍微改造一下,变成一个函数。这个函数会使用K-均值算法来进行聚类拟合,同时会画出按照这个聚类个数拟合后的分类情况


# 给的样本与聚类中心点,画出聚类效果图
def fit_plot_kmean_model(n_clusters, X):
    plt.xticks(())
    plt.yticks(())
    # 使用 k-均值算法进行拟合
    kmean = KMeans(n_clusters=n_clusters)
    kmean.fit_predict(X)
    # 这里得出聚类后预测的分类
    labels = kmean.labels_
    # 得到k个聚类的中心点
    centers = kmean.cluster_centers_
    # 设置格式
    markers = ['o', '^', '*', 's']
    colors = ['r', 'b', 'y', 'k']
    # 计算成本
    score = kmean.score(X)
    plt.title("k={}, score={}".format(n_clusters, (int)(score)))
    # 画样本
    for c in range(n_clusters):
        # 得到每一类的样本集
        cluster = X[labels == c]
        plt.scatter(cluster[:, 0], cluster[:, 1], 
                    marker=markers[c], s=10, c=colors[c])
    # 画出中心点,一个白色的大圆
    plt.scatter(centers[:, 0], centers[:, 1],
                marker='o', c="white", alpha=0.9, s=300)
    # 分别用数字标注k个聚类中心
    for i, c in enumerate(centers):
        plt.scatter(c[0], c[1], marker='$%d$' % i, s=50, c=colors[i])


分别选择K=[2,3,4]这三种不同的聚类个数,来观察一下K-均值算法最终拟合的结果及其成本


from sklearn.cluster import KMeans
n_clusters = [2, 3, 4]
plt.figure(figsize=(10, 3), dpi=144)
for i, c in enumerate(n_clusters):
    plt.subplot(1, 3, i + 1)
    fit_plot_kmean_model(c, X)

image.png


五聚类分析

k = 5
kmean = KMeans(n_clusters=k)
kmean.fit(X)
KMeans(n_clusters=5)
label = kmean.labels_
label.shape
(200,)
np.unique(label)
array([0, 1, 2, 3, 4])
center = kmean.cluster_centers_
center
array([[-7.27296406, -2.30283434],
       [-1.54465562,  4.4600113 ],
       [-7.06537034, -8.16829737],
       [-9.7797588 , -4.13703988],
       [-5.75509335, -3.38975021]])


同样的方法画出样本散点图与中心点


color = ['b','g','r','c','m']
marker = ['*','+','x','o','v']
plt.figure(figsize=(6,4), dpi=100)
for i in range(k):
    plt.scatter(X[label==i][:,0],X[label==i][:,1],c=color[i],marker=marker[i],s=15)
for i in range(k):
    plt.scatter(center[i][0],center[i][1],c=color[i],marker=marker[i],s=150)
plt.scatter(center[:, 0], center[:, 1], marker='o', c='y', alpha=0.9, s=300)
<matplotlib.collections.PathCollection at 0x1d4339e0308>


2. K-均值进行乳癌预测


%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np


加载数据集


from sklearn.datasets import load_breast_cancer
cancer = load_breast_cancer()
X = cancer.data
y = cancer.target
X.shape, y.shape, np.unique(y)
((569, 30), (569,))


数据集切分

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1)
X_train.shape, X_test.shape, y_train.shape, y_test.shape
((512, 30), (57, 30), (512,), (57,))


使用聚类进行分类

from sklearn.cluster import KMeans
k = 2
kmean = KMeans(n_clusters=k,  # 聚成2类: 有癌症与无癌症
               max_iter=100,  # max_iter=100表示最多进行100次K-均值迭代
               tol=0.01,      # tol=0.1表示中心点移动距离小于0.1时就认为算法已经收敛
               verbose=1,     # verbose=1表示输出迭代过程的详细信息
               n_init=3)      # n_init=3表示进行3遍K-均值运算后求平均值
# 训练
kmean.fit(X_train)
Initialization complete
Iteration 0, inertia 130944259.56339118
Iteration 1, inertia 85520526.48362829
Iteration 2, inertia 71354956.81268741
Iteration 3, inertia 68882163.38363403
Iteration 4, inertia 68649624.79611586
Converged at iteration 4: center shift 138.20126841342588 within tolerance 147.22628661541668.
Initialization complete
Iteration 0, inertia 75269696.14590229
Iteration 1, inertia 68630374.81870994
Converged at iteration 1: strict convergence.
Initialization complete
Iteration 0, inertia 84806412.90554185
Iteration 1, inertia 70867683.66786845
Iteration 2, inertia 68882163.38363403
Iteration 3, inertia 68649624.79611586
Converged at iteration 3: center shift 138.20126841342588 within tolerance 147.22628661541668.
KMeans(max_iter=100, n_clusters=2, n_init=3, tol=0.01, verbose=1)


从输出信息中可以看到,总共进行了3次K-均值聚类分析,kmean.labels_里保存的就是这些文档的类别信息;kmean.inertia_输出总的迭代次数

kmean.labels_.shape, y_train.shape
((512,), (512,))


将聚类预测与真实标签进行对比,这里需要注意的是,聚类算法将样本分成了两类,但是这里是不知道哪一类是患癌症哪一类是没有患癌症的

import pandas as pd
result = pd.DataFrame()
result['cluster_pred'] = kmean.labels_
result['true_label'] = y_train
result['compare'] = (y_train == kmean.labels_)
result.head(10)

image.png


通过前10个效果可以查看,下面统计一下正确与错误的个数,这一步可以通过groupby函数实现

result.groupby("compare").size()
compare
False     74
True     438
dtype: int64


大概计算出来,正确率为85%左右


下面通过测试集来进一步的查看效果

pred = kmean.predict(X_test)
kmean.labels_.shape, pred.shape
((512,), (57,))
result = pd.DataFrame()
result['cluster_pred'] = pred
result['true_label'] = y_test
result['compare'] = (y_test == pred)
result.head(10)

image.png

result.groupby("compare").size()
compare
False     9
True     48
dtype: int64


可以看见测试集的效果同样也是不错的,经过计算测试集的准确率可以达到84%左右,与训练集相似的一个结果


目录
打赏
0
0
0
0
21
分享
相关文章
AI训练师入行指南(三):机器学习算法和模型架构选择
从淘金到雕琢,将原始数据炼成智能珠宝!本文带您走进数字珠宝工坊,用算法工具打磨数据金砂。从基础的经典算法到精密的深度学习模型,结合电商、医疗、金融等场景实战,手把手教您选择合适工具,打造价值连城的智能应用。掌握AutoML改装套件与模型蒸馏术,让复杂问题迎刃而解。握紧算法刻刀,为数字世界雕刻文明!
18 6
Python 高级编程与实战:深入理解数据科学与机器学习
本文深入探讨了Python在数据科学与机器学习中的应用,介绍了pandas、numpy、matplotlib等数据科学工具,以及scikit-learn、tensorflow、keras等机器学习库。通过实战项目,如数据可视化和鸢尾花数据集分类,帮助读者掌握这些技术。最后提供了进一步学习资源,助力提升Python编程技能。
Java机器学习实战:基于DJL框架的手写数字识别全解析
在人工智能蓬勃发展的今天,Python凭借丰富的生态库(如TensorFlow、PyTorch)成为AI开发的首选语言。但Java作为企业级应用的基石,其在生产环境部署、性能优化和工程化方面的优势不容忽视。DJL(Deep Java Library)的出现完美填补了Java在深度学习领域的空白,它提供了一套统一的API,允许开发者无缝对接主流深度学习框架,将AI模型高效部署到Java生态中。本文将通过手写数字识别的完整流程,深入解析DJL框架的核心机制与应用实践。
30 2
Python 高级编程与实战:深入理解数据科学与机器学习
在前几篇文章中,我们探讨了 Python 的基础语法、面向对象编程、函数式编程、元编程、性能优化和调试技巧。本文将深入探讨 Python 在数据科学和机器学习中的应用,并通过实战项目帮助你掌握这些技术。
R1类模型推理能力评测手把手实战
R1类模型推理能力评测手把手实战
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
255 6
基于机器学习的人脸识别算法matlab仿真,对比GRNN,PNN,DNN以及BP四种网络
本项目展示了人脸识别算法的运行效果(无水印),基于MATLAB2022A开发。核心程序包含详细中文注释及操作视频。理论部分介绍了广义回归神经网络(GRNN)、概率神经网络(PNN)、深度神经网络(DNN)和反向传播(BP)神经网络在人脸识别中的应用,涵盖各算法的结构特点与性能比较。
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
518 13
机器学习算法的优化与改进:提升模型性能的策略与方法
使用 PAI-DSW x Free Prompt Editing图像编辑算法,开发个人AIGC绘图小助理
使用 PAI-DSW x Free Prompt Editing图像编辑算法,开发个人AIGC绘图小助理
CCS 2024:如何严格衡量机器学习算法的隐私泄露? ETH有了新发现
在2024年CCS会议上,苏黎世联邦理工学院的研究人员提出,当前对机器学习隐私保护措施的评估可能存在严重误导。研究通过LiRA攻击评估了五种经验性隐私保护措施(HAMP、RelaxLoss、SELENA、DFKD和SSL),发现现有方法忽视最脆弱数据点、使用较弱攻击且未与实际差分隐私基线比较。结果表明这些措施在更强攻击下表现不佳,而强大的差分隐私基线则提供了更好的隐私-效用权衡。
74 14

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等