1.ES简介
注:公司中大部分也是对于管理日志信息使用es,我们也是,这里做简单的教学,之后会有更加完整的ES学习介绍。
说明:
ES(Elasticsearch)Elasticsearch是一个基于Lucene的搜索服务器。它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口。Elasticsearch是用Java语言开发的,并作为Apache许可条款下的开放源码发布,是一种流行的企业级搜索引擎。Elasticsearch用于云计算中,能够达到实时搜索,稳定,可靠,快速,安装使用方便 。
其实记住是一个分布式全文搜索引擎,重点是全文搜索。
全文搜索:这里解释一下全文索引比如用户要搜索一个文章,以Java为关键字进行搜索,不管是书名中还是文章的标题,文章的作者名字,文章的摘要,只要是包含java关键字就会作为查询结果返回给用户查看,这就使用了全文搜索技术。
搜索的条件不再是仅用于对某一个字段进行比对与查找,而是在一条数据中使用搜索条件去比对表中更多的字段,只要能匹配上就作为查询结果,而ES技术就是一种可以实现上述效果的技术。
2.全文搜索实现过程:倒排索引
ES设计了一种全新的思想,来实现全文搜索。具体操作过程如下:
(1)进行分词
将被查询的字段的数据全部文本信息进行查分,分成若干个词
例如“我不想上班”就会被拆分成三个词,分别是“我”、“不想”、“上班”,此过程专业术语叫做分词。(根据分词的策略不同,分出的效果是不一样的,不同的分词策略称为分词器(ik)。)
(2)存储对应id
将分词得到的结果存储起来,对应每条数据的id
例如id为1的数据中名称这一项的值是“我不想上班”,那么分词结束后,就会出现“我”对应id为1,“不想”对应id为1,“上班”对应id为1
例如id为2的数据中名称这一项的值是“上班真的快乐“,那么分词结束后,就会出现“上班”对应id为2,“真的”对应id为2,“快乐”对应id为2
按照上述形式可以对所有文档进行分词。需要注意分词的过程不是仅对一个字段进行,而是对每一个参与查询的字段都执行,最终结果汇总到一个表格中此时就会出现如下对应结果:
(3)通过id查询结果
当进行查询时,如果输入“上班”作为查询条件,可以通过上述表格数据进行比对,得到id值1,2,然后根据id值就可以得到查询的结果数据了。
注:全文搜索中的分词结果关键字查询后得到的并不是整条的数据,而是数据的id,要想获得具体数据还要再次查询,这种分词结果关键字叫做倒排索引。
3.安装
(1)下载ES
windows版安装包下载地址:https://www.elastic.co/cn/downloads/elasticsearch
(2)解压缩
下载的安装包是解压缩就能使用的zip文件,解压缩完毕后会得到如下文件
bin目录:包含所有的可执行命令
config目录:包含ES服务器使用的配置文件
jdk目录:此目录中包含了一个完整的jdk工具包,版本17,当ES升级时,使用最新版本的jdk确保不会出现版本支持性不足的问题
lib目录:包含ES运行的依赖jar文件
logs目录:包含ES运行后产生的所有日志文件
modules目录:包含ES软件中所有的功能模块,也是一个一个的jar包。和jar目录不同,jar目录是ES运行期间依赖的jar包,modules是ES软件自己的功能jar包
plugins目录:包含ES软件安装的插件,默认为空
(3)启动服务器
进入bin目录,再进入命令窗口,输入以下命令:
elasticsearch.bat
双击elasticsearch.bat文件即可启动ES服务器,默认服务端口9200。通过浏览器访问http://localhost:9200看到如下信息视为ES服务器正常启动
{ "name" : "CZBK-**********", "cluster_name" : "elasticsearch", "cluster_uuid" : "j137DSswTPG8U4Yb-0T1Mg", "version" : { "number" : "7.16.2", "build_flavor" : "default", "build_type" : "zip", "build_hash" : "2b937c44140b6559905130a8650c64dbd0879cfb", "build_date" : "2021-12-18T19:42:46.604893745Z", "build_snapshot" : false, "lucene_version" : "8.10.1", "minimum_wire_compatibility_version" : "6.8.0", "minimum_index_compatibility_version" : "6.0.0-beta1" }, "tagline" : "You Know, for Search" }
(4)基本操作
ES中保存要查询的数据,只不过格式和数据库存储数据格式不同。在ES中我们要先创建倒排索引(这个索引的功能又点类似于数据库的表),然后将数据添加到倒排索引中,添加的数据称为文档。所以要进行ES的操作要先创建索引,再添加文档,这样才能进行后续的查询操作。
要操作ES可以通过Rest风格的请求来进行,也就是说发送一个请求就可以执行一个操作。比如新建索引,删除索引这些操作都可以使用发送请求的形式来进行。
(1)创建索引
user是索引名称,注意是put请求
PUT请求 http://localhost:9200/user
发送请求后,看到如下信息即索引创建成功
{ "acknowledged": true, "shards_acknowledged": true, "index": "books" }
注: 重复创建已经存在的索引会出现错误信息,reason属性中描述错误原因。
{ "error": { "root_cause": [ { "type": "resource_already_exists_exception", "reason": "index [books/VgC_XMVAQmedaiBNSgO2-w] already exists", "index_uuid": "VgC_XMVAQmedaiBNSgO2-w", "index": "books" } ], "type": "resource_already_exists_exception", "reason": "index [books/VgC_XMVAQmedaiBNSgO2-w] already exists", # books索引已经存在 "index_uuid": "VgC_XMVAQmedaiBNSgO2-w", "index": "book" }, "status": 400 }
(2)查询索引
GET请求 http://localhost:9200/user
查询索引得到索引相关信息,如下
{ "book": { "aliases": {}, "mappings": {}, "settings": { "index": { "routing": { "allocation": { "include": { "_tier_preference": "data_content" } } }, "number_of_shards": "1", "provided_name": "books", "creation_date": "1645768584849", "number_of_replicas": "1", "uuid": "VgC_XMVAQmedaiBNSgO2-w", "version": { "created": "7160299" } } } } }
注: 如果查询了不存在的索引,会返回错误信息。
{ "error": { "root_cause": [ { "type": "index_not_found_exception", "reason": "no such index [book]", "resource.type": "index_or_alias", "resource.id": "book", "index_uuid": "_na_", "index": "book" } ], "type": "index_not_found_exception", "reason": "no such index [book]", # 没有book索引 "resource.type": "index_or_alias", "resource.id": "book", "index_uuid": "_na_", "index": "book" }, "status": 404 }
(3)删除索引
DELETE请求 http://localhost:9200/books
删除所有后,给出删除结果
{ "acknowledged": true }
注: 如果重复删除,会给出错误信息,同样在reason属性中描述具体的错误原因
{ "error": { "root_cause": [ { "type": "index_not_found_exception", "reason": "no such index [books]", "resource.type": "index_or_alias", "resource.id": "book", "index_uuid": "_na_", "index": "book" } ], "type": "index_not_found_exception", "reason": "no such index [books]", # 没有books索引 "resource.type": "index_or_alias", "resource.id": "book", "index_uuid": "_na_", "index": "book" }, "status": 404 }
(4)创建索引并指定分词器
前面创建的索引是未指定分词器的,可以在创建索引时添加请求参数,设置分词器。目前国内较为流行的分词器是IK分词器,使用前先在下对应的分词器,然后使用。
IK分词器下载地址:https://github.com/medcl/elasticsearch-analysis-ik/releases
分词器下载后解压到ES安装目录的plugins目录中即可,安装分词器后需要重新启动ES服务器。
使用IK分词器创建索引格式:(要把注释删掉否则报错)
PUT请求 http://localhost:9200/books
请求参数如下(注意是json格式的参数)
{ "mappings":{ #定义mappings属性,替换创建索引时对应的mappings属性 "properties":{ #定义索引中包含的属性设置 "id":{ #设置索引中包含id属性 "type":"keyword" #当前属性可以被直接搜索 }, "name":{ #设置索引中包含name属性 "type":"text", #当前属性是文本信息,参与分词 "analyzer":"ik_max_word", #使用IK分词器进行分词 "copy_to":"all" #分词结果拷贝到all属性中 }, "type":{ "type":"keyword" }, "description":{ "type":"text", "analyzer":"ik_max_word", "copy_to":"all" }, "all":{ #定义属性,用来描述多个字段的分词结果集合,当前属性可以参与查询 "type":"text", "analyzer":"ik_max_word" } } } }
创建完毕后返回结果和不使用分词器创建索引的结果是一样的。
此时可以通过查看索引信息观察到添加的请求参数mappings已经进入到了索引属性中
{ "user": { "aliases": {}, "mappings": { #mappings属性已经被替换 "properties": { "all": { "type": "text", "analyzer": "ik_max_word" }, "description": { "type": "text", "copy_to": [ "all" ], "analyzer": "ik_max_word" }, "id": { "type": "keyword" }, "name": { "type": "text", "copy_to": [ "all" ], "analyzer": "ik_max_word" }, "type": { "type": "keyword" } } }, "settings": { "index": { "routing": { "allocation": { "include": { "_tier_preference": "data_content" } } }, "number_of_shards": "1", "provided_name": "books", "creation_date": "1645769809521", "number_of_replicas": "1", "uuid": "DohYKvr_SZO4KRGmbZYmTQ", "version": { "created": "7160299" } } } } }
目前我们已经有了索引了,但是索引中还没有数据,所以要先添加数据,ES中称数据为文档,下面进行文档操作。
a.添加文档,有三种方式
POST请求 http://localhost:9200/user/_doc #使用系统生成id POST请求 http://localhost:9200/user/_create/1 #使用指定id POST请求 http://localhost:9200/user/_doc/1 #使用指定id,不存在创建,存在更新(版本递增) 文档通过请求参数传递,数据格式json { "name":"cllb", "type":"bozhu", "description":"xihuan java" }