初入算法(1)—— 进入算法世界

简介: 了解算法,学习算法,应用算法

一.什么是算法

1.在书中所讲到


   瑞士著名的科学家Niklaus Wirth教授曾提出:数据结构+算法=程序。

   数据结构是程序的骨架,算法是程序的灵魂。

   在生活中,算法无处不在。每天早上起来,刷牙、洗脸、吃早餐,都在算着时间,以免上班或上课迟到;去超市购物,在资金有限的情况下,考虑先买什么、后买什么,算算是否超额;在家中做饭,用什么食材、调料,具体的烹饪方法和步骤如何,做完了还要品尝一下咸淡,看看是否做熟。所以,不要说你不懂算法,其实你每天都在用!


2.我个人认为


算法就是通过一些指令,用系统的方法描述解决问题的策略机制。通俗讲就是用于计算的方法,通过该这种方法可以达到预期的结果。

二.算法的复杂性


1.相对于算法来说,他并不会特别的简单,他有复杂,有简单。


   算法复杂性的度量主要是针对运行该算法所需要的计算机资源的多少。当算法所需要的资源越多,该算法的复杂性越高;反之,当算法所需要的资源越少,算法的复杂性越低。对于任意给定的一个问题,设计出复杂性尽可能低的算法是在设计算法时追求的重要目标之一;而当给定的问题存在多种算法时,选择其中复杂性最低的算法是选用算法时遵循的重要准则。因此,算法的复杂性分析对算法的设计或选用具有重要的指导意义和实用价值。


2.算法是对特定问题求解步骤的一种描述



   算法只是对问题求解方法的一种描述,它不依赖于任何一种语言,既可以用自然语言、程序设计语言(C、C++、Java、Python等)描述,也可以用流程图、框图来表示。通常情况下,为了更清楚地说明算法的本质,我们会去除计算机语言的语法规则和细节,采用“伪代码”来描述算法。“伪代码”介于自然语言和程序设计语言之间,它更符合人们的表达方式,容易理解,但它不是严格的程序设计语言。如果要上机调试,则需要转换成标准的计算机程序设计语言才能运行。

三,算法的五个特征


一个典型的算法一般都可以抽象出5个特征:


有穷性:算法的指令或者步骤的执行次数和时间都是有限的。(有限的)


确切性:算法的指令或步骤都有明确的定义。(明确的)


输入:有相应的输入条件来刻画运算对象的初始情况。


输出:一个算应有明确的结果输出。


可行性:算法的执行步骤必须是可行的。(可执行性)

四.“好”算法的标准如下


    正确性:正确性是指算法能够满足具体问题的需求,程序运行正常,无语法错误,能够通过典型的软件测试,达到预期。

   易读性:算法遵循标识符命名规则,简洁易懂,注释语句恰当适量,方便自己和他人阅读,便于后期调试和修改。

   健壮性:算法对非法数据及操作有较好的反应和处理。例如,在学生信息管理系统中登记学生年龄时,若将21岁误输入为210岁,则系统应该有错误提示。

   高效性:高效性是指算法运行效率高,即算法运行所消耗的时间短。

   低存储性:低存储性是指算法所需的存储空间小。对于像手机、平板电脑这样的嵌入式设备,算法如果占用空间过大,则无法运行。算法占用的空间大小被称为空间复杂度。


五.时间复杂性

1.什么是时间复杂性


简单来说就是算法运行需要时间


一般情况下,对于一个算法的复杂性分析主要是对算法效率的分析,包括衡量其运行速度的时间效率及衡量其运行时所需要占用空间大小的空间效率。


   对于算法的时间效率的计算,通常是抛开与计算机硬件、软件有关的因素,仅考虑实现该算法的高级语言程序。一般而言,对程序执行的时间复杂度的分析是分块进行的,先分析程序中的语句,再分析各程序段,最后分析整个程序的执行复杂度。通常以渐进式的大O(希腊字母Omicron,奥米克戎)形式来表示算法的时间复杂度。渐进式的大O形式表示时间复杂度的主要运算规则有如下2种


例子

2.渐近上界


   T(n)和Cf(n)的函数曲线如图1-1所示。从图1-1可以看出,当n大于等于n0时,T(n)sCf(n);当n足够大时,T(n)和f(n)近似相等。因此,我们用O(f(n))表示时间复杂度渐近上界,可以用这种表示法衡量算法的时间复杂度。算法1-3的时间复杂度渐近上界为O(f(n))=O(n2),用极限可以表示为

图片.png

3.渐近下界


   渐近下界符号Ω(T(n)≥Cf(n)),如图1-2所示。从图1-2可以看出,当n大于等于n0时,T(n)大于等于Cf(n));当n足够大时,T(n)和f(n)近似相等。因此,我们用(Ω(f(n))来表示时间复杂度渐近下界。


图片.png

在实际应用中,通常使用时间复杂度渐近上界O(f(n))来表示时间复杂度。


有些算法,如排序、查找、插入算法等,可以分为最好、最坏和平均情况分别求算法渐近复杂度。但考查一个算法时通常考查最坏的情况,而不是考查最好的情况,最坏情况对衡量算法的好坏具有实际意义。

六.空间复杂性

1.什么是空间复杂性


算法占用空间的大小


一般情况下,一个算法所占用的存储空间包括算法自身、算法的输入、算法的输出及实现算法的在程序运行时所占用空间的总和。

2.算法占用的存储空间包括


   输入/输出数据

   算法本身

   额外需要的辅助空间


   输入/输出数据占用的空间是必需的,算法本身占用的空间可以通过精简算法来缩减,但缩减的量是很小的,可以忽略不计。算法在运行时所使用的辅助变量占用的空间(即辅助空间)才是衡量算法空间复杂度的关键因素。


本篇文章就先讲解这些,我后续将会持续更新算法文章。


创作不易,求关注,点赞,收藏,谢谢~

目录
相关文章
|
机器学习/深度学习 算法 程序员
初入算法(2)—— 进入算法世界
本章将会继续在初入算法(1)——进入算法世界 的基础上继续通过趣学算法进行算法的学习。
164 1
初入算法(2)—— 进入算法世界
|
12天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
145 80
|
5天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
8天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
4天前
|
算法
基于梯度流的扩散映射卡尔曼滤波算法的信号预处理matlab仿真
本项目基于梯度流的扩散映射卡尔曼滤波算法(GFDMKF),用于信号预处理的MATLAB仿真。通过设置不同噪声大小,测试滤波效果。核心代码实现数据加载、含噪信号生成、扩散映射构建及DMK滤波器应用,并展示含噪与无噪信号及滤波结果的对比图。GFDMKF结合非线性流形学习与经典卡尔曼滤波,提高对非线性高维信号的滤波和跟踪性能。 **主要步骤:** 1. 加载数据并生成含噪测量值。 2. 使用扩散映射捕捉低维流形结构。 3. 应用DMK滤波器进行状态估计。 4. 绘制不同SNR下的轨迹示例。
|
9天前
|
机器学习/深度学习 算法 索引
单目标问题的烟花优化算法求解matlab仿真,对比PSO和GA
本项目使用FW烟花优化算法求解单目标问题,并在MATLAB2022A中实现仿真,对比PSO和GA的性能。核心代码展示了适应度计算、火花生成及位置约束等关键步骤。最终通过收敛曲线对比三种算法的优化效果。烟花优化算法模拟烟花爆炸过程,探索搜索空间,寻找全局最优解,适用于复杂非线性问题。PSO和GA则分别适合快速收敛和大解空间的问题。参数调整和算法特性分析显示了各自的优势与局限。
|
3天前
|
算法 5G
基于MSWA相继加权平均的交通流量分配算法matlab仿真
本项目基于MSWA(Modified Successive Weighted Averaging)相继加权平均算法,对包含6个节点、11个路段和9个OD对的交通网络进行流量分配仿真。通过MATLAB2022A实现,核心代码展示了迭代过程及路径收敛曲线。MSWA算法在经典的SUE模型基础上改进,引入动态权重策略,提高分配结果的稳定性和收敛效率。该项目旨在预测和分析城市路网中的交通流量分布,达到用户均衡状态,确保没有出行者能通过改变路径减少个人旅行成本。仿真结果显示了27条无折返有效路径的流量分配情况。
|
1月前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
17天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
24天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。

热门文章

最新文章