python机器学习入门之自然语言处理(NLP)工具Jieba的使用及解析

本文涉及的产品
NLP 自学习平台,3个模型定制额度 1个月
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
简介: python机器学习入门之自然语言处理(NLP)工具Jieba的使用及解析

自然语言处理(NLP) 是指用算法对人类口头表达或书面提供的自然语言信息进行处理的技术,自然语言处理属于人工智能和语言学的交叉学科


中文分词工具主要是Jieba。不仅能提供分词,还提供关键词提取和词性标注等功能。以下是Jieba分词的三种模式


1:精确模式 试图将句子最精确的切开 适合文本分析


2:全模式 把句子中所有可以成词的词语都扫描出来 速度非常快 但是不能解决歧义


3:搜索引擎模式 在精确模式的基础上 对长词进行切分 提高召回率 适合用于搜索引擎分词


同时Jieba还支持繁体分词 自定义词典 MIT授权协议等等...


分词效果如下

1666425227490.jpg

代码如下

import  jieba.posseg as pseg
import jieba.analyse
list0=jieba.cut('东北林业大学的猫科动物专家判定,这只野生东北虎属于定居虎',cut_all=True)
print('全模式',list(list0))
list1=jieba.cut('东北林业大学的猫科动物专家判定,这只野生东北虎属于定居虎',cut_all=False)
print('精确模式',list(list1))
list2=jieba.cut('东北林业大学的猫科动物专家判定,这只野生东北虎属于定居虎')
print('搜索引擎模式',list(list2))

同样可以使用停用词 对文本进行分词 停用词就是在自然语言处理时可以自动或手动选择忽略的某些字和词


代码如下

import  jieba.posseg as pseg
import jieba.analyse
def stopwords(filepath):
    f=open(filepath,'r',encoding='utf-8')
    txt=f.readlines()
    stopwords=[]
    for line in txt:
        stopwords.append(line.strip())
    return stopwords
inputs=open('zhangsan.txt','rb')
stopwords=stopwords('zhangsan.txt')
outstr=''
for line in inputs:
    sentence_seged=jieba.cut(line.strip())
    for word in sentence_seged:
        if word not in stopwords:
            if word!='\t':
                outstr+=''+word
                outstr+=''
print(outstr)
相关文章
|
5天前
|
机器学习/深度学习 数据采集 算法
Python机器学习:Scikit-learn库的高效使用技巧
【10月更文挑战第28天】Scikit-learn 是 Python 中最受欢迎的机器学习库之一,以其简洁的 API、丰富的算法和良好的文档支持而受到开发者喜爱。本文介绍了 Scikit-learn 的高效使用技巧,包括数据预处理(如使用 Pipeline 和 ColumnTransformer)、模型选择与评估(如交叉验证和 GridSearchCV)以及模型持久化(如使用 joblib)。通过这些技巧,你可以在机器学习项目中事半功倍。
16 3
|
9天前
|
测试技术 开发者 Python
深入浅出:Python中的装饰器解析与应用###
【10月更文挑战第22天】 本文将带你走进Python装饰器的世界,揭示其背后的魔法。我们将一起探索装饰器的定义、工作原理、常见用法以及如何自定义装饰器,让你的代码更加简洁高效。无论你是Python新手还是有一定经验的开发者,相信这篇文章都能为你带来新的启发和收获。 ###
8 1
|
9天前
|
设计模式 测试技术 开发者
Python中的装饰器深度解析
【10月更文挑战第24天】在Python的世界中,装饰器是那些能够为函数或类“添彩”的魔法工具。本文将带你深入理解装饰器的概念、工作原理以及如何自定义装饰器,让你的代码更加优雅和高效。
|
10天前
|
机器学习/深度学习 人工智能 算法
机器学习基础:使用Python和Scikit-learn入门
机器学习基础:使用Python和Scikit-learn入门
20 1
|
12天前
|
机器学习/深度学习 并行计算 数据挖掘
R语言是一种强大的统计分析工具,广泛应用于数据分析和机器学习领域
【10月更文挑战第21天】R语言是一种强大的统计分析工具,广泛应用于数据分析和机器学习领域。本文将介绍R语言中的一些高级编程技巧,包括函数式编程、向量化运算、字符串处理、循环和条件语句、异常处理和性能优化等方面,以帮助读者更好地掌握R语言的编程技巧,提高数据分析的效率。
33 2
|
16天前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
|
19天前
|
XML 前端开发 数据格式
Beautiful Soup 解析html | python小知识
在数据驱动的时代,网页数据是非常宝贵的资源。很多时候我们需要从网页上提取数据,进行分析和处理。Beautiful Soup 是一个非常流行的 Python 库,可以帮助我们轻松地解析和提取网页中的数据。本文将详细介绍 Beautiful Soup 的基础知识和常用操作,帮助初学者快速入门和精通这一强大的工具。【10月更文挑战第11天】
51 2
|
19天前
|
数据安全/隐私保护 流计算 开发者
python知识点100篇系列(18)-解析m3u8文件的下载视频
【10月更文挑战第6天】m3u8是苹果公司推出的一种视频播放标准,采用UTF-8编码,主要用于记录视频的网络地址。HLS(Http Live Streaming)是苹果公司提出的一种基于HTTP的流媒体传输协议,通过m3u8索引文件按序访问ts文件,实现音视频播放。本文介绍了如何通过浏览器找到m3u8文件,解析m3u8文件获取ts文件地址,下载ts文件并解密(如有必要),最后使用ffmpeg合并ts文件为mp4文件。
|
22天前
|
Web App开发 SQL 数据库
使用 Python 解析火狐浏览器的 SQLite3 数据库
本文介绍如何使用 Python 解析火狐浏览器的 SQLite3 数据库,包括书签、历史记录和下载记录等。通过安装 Python 和 SQLite3,定位火狐数据库文件路径,编写 Python 脚本连接数据库并执行 SQL 查询,最终输出最近访问的网站历史记录。
|
21天前
|
机器学习/深度学习 人工智能 算法
机器学习基础:使用Python和Scikit-learn入门
【10月更文挑战第12天】本文介绍了如何使用Python和Scikit-learn进行机器学习的基础知识和入门实践。首先概述了机器学习的基本概念,包括监督学习、无监督学习和强化学习。接着详细讲解了Python和Scikit-learn的安装、数据处理、模型训练和评估等步骤,并提供了代码示例。通过本文,读者可以掌握机器学习的基本流程,并为深入学习打下坚实基础。
16 1