pytorch搭建LSTM神经网络预测电力负荷

简介: pytorch搭建LSTM神经网络预测电力负荷
import torch
import torch.nn as nn
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# 由于训练数据存在相差较大的,因此使用min/max尺度变换对训练数据进行归一化
# 注意只对训练数据进行归一化,为了防止有些信息从训练数据泄露到的测试数据
from sklearn.preprocessing import MinMaxScaler
flight_data = pd.read_csv(r"C:\Users\Administrator\Desktop\填补缺失值.csv")
fig_size = plt.rcParams["figure.figsize"]
fig_size[0] = 15
fig_size[1] = 5
plt.rcParams["figure.figsize"] = fig_size
plt.title('power vs day')
plt.ylabel('power')
plt.xlabel('day')
plt.grid(True)
plt.autoscale(axis='x',tight=True)
plt.plot(flight_data['power'])
plt.show()
#提取数据
all_data = flight_data['power'].values.astype(float)
print(all_data)
#将数据区分为训练数据和测试数据
test_data_size = 960
train_data = all_data[:-test_data_size]
test_data = all_data[-test_data_size:]
# 由于训练数据存在相差较大的,因此使用min/max尺度变换对训练数据进行归一化
# 注意只对训练数据进行归一化,为了防止有些信息从训练数据泄露到的测试数据
scaler = MinMaxScaler(feature_range=(-1, 1))
train_data_normalized = scaler.fit_transform(train_data.reshape(-1, 1))
print(train_data_normalized)
# 将数据转换为张量
train_data_normalized = torch.FloatTensor(train_data_normalized).view(-1)
def create_inout_sequences(input_data, tw):
    inout_seq = []
    L = len(input_data)
    for i in range(L-tw):
        train_seq = input_data[i:i+tw]
        train_label = input_data[i+tw:i+tw+1]
        inout_seq.append((train_seq ,train_label))
    return inout_seq
train_window =5
train_inout_seq = create_inout_sequences(train_data_normalized, train_window)
#定义LSTM模型
class LSTM(nn.Module):
 def __init__(self, input_size=1, hidden_size=55, output_size=1):
        super().__init__()
        self.hidden_size = hidden_size
        # 定义lstm 层
        self.lstm = nn.LSTM(input_size, hidden_size)
        # 定义线性层,即在LSTM的的输出后面再加一个线性层
        self.linear = nn.Linear(hidden_size, output_size)
    # input_seq参数表示输入sequence
 def forward(self, input_seq):
        # lstm默认的输入X是(sequence_legth,bacth_size,input_size)
        lstm_out,\
        self.hidden_cell = self.lstm(input_seq.view(len(input_seq), 1, -1), self.hidden_cell)
        # lstm_out的默认大小是(sequence_legth,bacth_size,hidden_size)
        # 转化之后lstm_out的大小是(sequence_legth, bacth_size*hidden_size)
        predictions = self.linear(lstm_out.view(len(input_seq), -1))
        # 由于bacth_size = 1, 可知predictions 的维度为(sequence_legth, output_size)
        # [-1] 表示的是取最后一个时间步长对应的输出
        return predictions[-1]
# 模型实例化并定义损失函数和优化函数
model = LSTM()
loss_function = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
print(model)
epochs = 1
for i in range(epochs):
    for seq, labels in train_inout_seq:
        optimizer.zero_grad()
        model.hidden_cell = (torch.zeros(1, 1, model.hidden_size),
                        torch.zeros(1, 1, model.hidden_size))
        y_pred = model(seq)
        single_loss = loss_function(y_pred, labels)
        single_loss.backward()
        optimizer.step()
    #if i%25 == 1:
        print(f'epoch: {i:3} loss: {single_loss.item():10.8f}')
print(f'epoch: {i:3} loss: {single_loss.item():10.10f}')
# 以train data的最后12个数据进行预测
fut_pred = 960
test_inputs = train_data_normalized[-train_window:].tolist()
print(test_inputs)
model.eval()
# 基于最后12个数据来预测第133个数据,并基于新的预测数据进一步预测
# 134-144 的数据
for i in range(fut_pred):
    seq = torch.FloatTensor(test_inputs[-train_window:])
    # 模型评价时候关闭梯度下降
    with torch.no_grad():
        model.hidden = (torch.zeros(1, 1, model.hidden_size),
                        torch.zeros(1, 1, model.hidden_size))
        test_inputs.append(model(seq).item())
test_inputs[fut_pred:]
actual_predictions = scaler.inverse_transform(np.array(test_inputs[train_window:] ).reshape(-1, 1))
print(actual_predictions)
# 绘制图像查看预测的[133-144]的数据和实际的133-144 之间的数据差别
x = np.arange(127584,128544, 1)
plt.title('power vs day')
plt.ylabel('power')
plt.grid(True)
plt.autoscale(axis='x', tight=True)
plt.plot(flight_data['power'])
plt.plot(x,actual_predictions)
plt.show()

话不多说,先上代码,这个LSTM网络是基于之前一个博主的,然后我再根据自己的比赛需要改进了一部分,这篇文章算是记录一下自己第一次搭建神经网络。


1:第一个就是数据的读取 建议使用pandas来读取数据 值得注意的是路径名前要有一个r用于转义,否则系统会报错,还有EXCEL文件要转化成CSV格式


2:第二个就是对于原始数据的可视化,python作为解释性语言相信大家也看的明白那些plt...怎么干嘛


3:因为数据是一个时间序列,所以我们先提取其中的值部分,先忽略时间部分


4:将数据集划分为训练集和测试集,比例一般在4:1左右


5:数据的归一化


from sklearn.preprocessing import MinMaxScaler使用库函数  将值变化到-1到1之间 这样便于在训练的时候快速收敛 不然计算时间会比较久

还有就是一些参数的设定 比如train_window hidden_size epoch fut_pred等等参数的设置 里面还有一些LSTM的细节 感兴趣的可以多了解一下他的原理


最后就是自己改预测范围 看你想要的预测是多


少  当然原来的博主里面没有反归一化  我们要记得反归一化 不然预测的数据还是-1到1

actual_predictions = scaler.inverse_transform(np.array(test_inputs[train_window:] ).reshape(-1, 1))
相关文章
|
3月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch 中的动态计算图:实现灵活的神经网络架构
【8月更文第27天】PyTorch 是一款流行的深度学习框架,它以其灵活性和易用性而闻名。与 TensorFlow 等其他框架相比,PyTorch 最大的特点之一是支持动态计算图。这意味着开发者可以在运行时定义网络结构,这为构建复杂的模型提供了极大的便利。本文将深入探讨 PyTorch 中动态计算图的工作原理,并通过一些示例代码展示如何利用这一特性来构建灵活的神经网络架构。
260 1
|
2月前
|
缓存 算法 物联网
基于AODV和leach协议的自组网络平台matlab仿真,对比吞吐量,负荷,丢包率,剩余节点个数,节点消耗能量
本系统基于MATLAB 2017b,对AODV与LEACH自组网进行了升级仿真,新增运动节点路由测试,修正丢包率统计。AODV是一种按需路由协议,结合DSDV和DSR,支持动态路由。程序包含参数设置、消息收发等功能模块,通过GUI界面配置节点数量、仿真时间和路由协议等参数,并计算网络性能指标。 该代码实现了节点能量管理、簇头选举、路由发现等功能,并统计了网络性能指标。
162 73
|
4月前
|
机器学习/深度学习 数据采集 人工智能
Python实现深度神经网络RNN-LSTM分类模型(医学疾病诊断)
Python实现深度神经网络RNN-LSTM分类模型(医学疾病诊断)
136 0
Python实现深度神经网络RNN-LSTM分类模型(医学疾病诊断)
|
3月前
|
机器学习/深度学习 人工智能 PyTorch
【深度学习】使用PyTorch构建神经网络:深度学习实战指南
PyTorch是一个开源的Python机器学习库,特别专注于深度学习领域。它由Facebook的AI研究团队开发并维护,因其灵活的架构、动态计算图以及在科研和工业界的广泛支持而受到青睐。PyTorch提供了强大的GPU加速能力,使得在处理大规模数据集和复杂模型时效率极高。
192 59
|
2月前
|
机器学习/深度学习
小土堆-pytorch-神经网络-损失函数与反向传播_笔记
在使用损失函数时,关键在于匹配输入和输出形状。例如,在L1Loss中,输入形状中的N代表批量大小。以下是具体示例:对于相同形状的输入和目标张量,L1Loss默认计算差值并求平均;此外,均方误差(MSE)也是常用损失函数。实战中,损失函数用于计算模型输出与真实标签间的差距,并通过反向传播更新模型参数。
|
3月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch代码实现神经网络
这段代码示例展示了如何在PyTorch中构建一个基础的卷积神经网络(CNN)。该网络包括两个卷积层,分别用于提取图像特征,每个卷积层后跟一个池化层以降低空间维度;之后是三个全连接层,用于分类输出。此结构适用于图像识别任务,并可根据具体应用调整参数与层数。
|
3月前
|
机器学习/深度学习 PyTorch TensorFlow
【PyTorch】PyTorch深度学习框架实战(一):实现你的第一个DNN网络
【PyTorch】PyTorch深度学习框架实战(一):实现你的第一个DNN网络
155 1
|
3月前
|
机器学习/深度学习 人工智能 PyTorch
AI智能体研发之路-模型篇(五):pytorch vs tensorflow框架DNN网络结构源码级对比
AI智能体研发之路-模型篇(五):pytorch vs tensorflow框架DNN网络结构源码级对比
76 1
|
3月前
|
机器学习/深度学习 PyTorch 测试技术
深度学习入门:使用 PyTorch 构建和训练你的第一个神经网络
【8月更文第29天】深度学习是机器学习的一个分支,它利用多层非线性处理单元(即神经网络)来解决复杂的模式识别问题。PyTorch 是一个强大的深度学习框架,它提供了灵活的 API 和动态计算图,非常适合初学者和研究者使用。
49 0
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
7.1 NLP经典神经网络 RNN LSTM
该文章介绍了自然语言处理中的情感分析任务,探讨了如何使用深度神经网络,特别是循环神经网络(RNN)和长短时记忆网络(LSTM),来处理和分析文本数据中的复杂情感倾向。

热门文章

最新文章