卷积神经网络基础--输入层、卷积层

简介: 局部连接和权值共享是卷积层的两个最主要的特征:为提取数据的特征信息,需把数据中潜在的具有相关性的信息抽象化,便于进行以上两个特征操作。

输入层
我们通常在这一层对传入数据进行处理,此步骤可大幅优化图像处理结果,有效防止输入不同的数据单位,显著缩短神经网络训练耗时,提高网络收敛速率;需要引起注意的是,神经网络的激活函数一般都处于一定的数值区间,因此进行网络训练的数据得映射到相应的区间。

运行人工神经网络时,底层参数更新对其有显著的作用效果,造成的影响会导致假设条件难以满足。从事相关研究的科学家们在神经网络中采取归一化操作,能有效解决假设条件难以满足的问题。

此方法通常对数据做一定尺度的放大和缩小操作,一般情况下被用来对数据进行预处理或者对不同单位的测量数据作归一化数据分析。也就是说,归一化这一步骤就是将数据限制在某个数值范围内,再进行线性对比拉伸:

1.png

卷积层
卷积层的主要作用是对输入图像进行卷积运算和特征提取。卷积层中含有一系列具有同一大小的卷积核,不同的卷积核对特征提取有不同的作用。

本层进行卷积运算的步骤如下:先假设卷积核的尺寸为m×n,原始图像为X,再对尺寸为mxn的卷积核中的权值w与原始图像X中的像素值x进行求积运算,计算的公式如下:

2.png

以下图3.4为例展示标准卷积运算过程。卷积运算的卷积核每次滑过原始数字图像的9个像素,覆盖像素的滑动框会滑动四次,得到一个尺寸为2×2的二维数据。对于原始数据尺寸为n的数字图像,执行尺寸为f的卷积运算操作,最终输出的数字图像大小为n-f+1。

3.png

局部连接和权值共享是卷积层的两个最主要的特征:为提取数据的特征信息,需把数据中潜在的具有相关性的信息抽象化,便于进行以上两个特征操作。

局部连接是由人的视觉系统激发出来的,它通过将卷积层的结点与上一层的局部结点相结合,从而达到学习局部特征的目的。对于待识别的图像,在某个特定区域内,相邻的像素间的关联度高,而相距较远的像素关联度低。而在局部连接中,单一的神经元仅需要对图象的局部感知,再将全部的局部感知信息按顺序合并,就可以获得整个图象的整体信息。局部连接和全连接如图3.6所示,下图中,(a)是局部连接,(b)是全连接。

4.png
5.png

通过局部连接方式对神经元连接进行改进之后虽然在一定程度上使得网络中的参数量变少,但神经元数量任然很多,参数量依然会很多。想要参数数量变少,就需要运用权值共享策略。权值共享是指用权重参数相同的卷积核对输入图像进行卷积运算,用相同的参数提取图像特征。如图表示的是权值共享。

6.png

相关文章
|
9天前
|
机器学习/深度学习 计算机视觉 网络架构
为什么卷积现在不火了:CNN研究热度降温的深层原因分析
纵观近年的顶会论文和研究热点,我们不得不承认一个现实:CNN相关的研究论文正在减少,曾经的"主角"似乎正逐渐淡出研究者的视野。
32 11
为什么卷积现在不火了:CNN研究热度降温的深层原因分析
|
15天前
|
机器学习/深度学习 计算机视觉 Python
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力本文提出了一种简单且高效的卷积神经网络(ConvNets)注意力模块——SimAM。与现有模块不同,SimAM通过优化能量函数推断特征图的3D注意力权重,无需添加额外参数。SimAM基于空间抑制理论设计,通过简单的解决方案实现高效计算,提升卷积神经网络的表征能力。代码已在Pytorch-SimAM开源。
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力
|
9天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络:从理论到实践
【10月更文挑战第35天】在人工智能的浪潮中,深度学习技术以其强大的数据处理能力成为科技界的宠儿。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,在图像识别和视频分析等领域展现出了惊人的潜力。本文将深入浅出地介绍CNN的工作原理,并结合实际代码示例,带领读者从零开始构建一个简单的CNN模型,探索其在图像分类任务中的应用。通过本文,读者不仅能够理解CNN背后的数学原理,还能学会如何利用现代深度学习框架实现自己的CNN模型。
|
8天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第36天】探索卷积神经网络(CNN)的神秘面纱,揭示其在图像识别领域的威力。本文将带你了解CNN的核心概念,并通过实际代码示例,展示如何构建和训练一个简单的CNN模型。无论你是深度学习的初学者还是希望深化理解,这篇文章都将为你提供有价值的见解。
|
19天前
|
机器学习/深度学习 监控 自动驾驶
卷积神经网络有什么应用场景
【10月更文挑战第23天】卷积神经网络有什么应用场景
22 2
|
9天前
|
机器学习/深度学习 人工智能 自动驾驶
深入解析深度学习中的卷积神经网络(CNN)
深入解析深度学习中的卷积神经网络(CNN)
26 0
|
12天前
|
机器学习/深度学习 人工智能 TensorFlow
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第32天】本文将介绍深度学习中的一个重要分支——卷积神经网络(CNN),以及其在图像识别领域的应用。我们将通过一个简单的代码示例,展示如何使用Python和TensorFlow库构建一个基本的CNN模型,并对其进行训练和测试。
|
18天前
|
机器学习/深度学习 自然语言处理 TensorFlow
深度学习中的卷积神经网络(CNN)及其应用
【10月更文挑战第26天】在这篇文章中,我们将深入探讨卷积神经网络(CNN)的基本原理、结构和应用。CNN是深度学习领域的一个重要分支,广泛应用于图像识别、语音处理等领域。我们将通过代码示例和实际应用案例,帮助读者更好地理解CNN的概念和应用。
|
5天前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
【10月更文挑战第39天】在数字化时代,网络安全和信息安全成为了我们生活中不可或缺的一部分。本文将介绍网络安全漏洞、加密技术和安全意识等方面的内容,帮助读者更好地了解网络安全的重要性,并提供一些实用的技巧和方法来保护自己的信息安全。
15 2
|
6天前
|
安全 网络安全 数据安全/隐私保护
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
【10月更文挑战第38天】本文将探讨网络安全与信息安全的重要性,包括网络安全漏洞、加密技术和安全意识等方面。我们将通过代码示例和实际操作来展示如何保护网络和信息安全。无论你是个人用户还是企业,都需要了解这些知识以保护自己的网络安全和信息安全。

热门文章

最新文章