MATLAB-灰度预测

简介: MATLAB-灰度预测

面将主要从三方面进行大致讲解,灰色预测概念及原理、灰色预测的分类及求解步骤、灰色预测的实例讲解。

一、灰色预测概念及原理:


1.概述:


关于所谓的“颜色”预测或者检测等,大致分为三色:黑、白、灰,在此以预测为例阐述。

其中,白色预测是指系统的内部特征完全已知,系统信息完全充分;黑色预测指系统的内部特征一无所知,只能通过观测其与外界的联系来进行研究;灰色预测则是介于黑、白两者之间的一种预测,一部分已知,一部分未知,系统因素间有不确定的关系。细致度比较:白>黑>灰。

2.原理:


灰色预测是通过计算各因素之间的关联度,鉴别系统各因素之间发展趋势的相异程度。其核心体系是灰色模型(Grey Model,GM),即对原始数据做累加生成(或者累减、均值等方法)生成近似的指数规律在进行建模的方法。

二、灰色预测的分类及求解步骤:


1.GM(1,1)与GM(2,1)、DGM、Verhulst模型的分类比较:

image.png

2.求解步骤思维导图:

其中预测过程可能会涉及以下三种序列、白化微分方程、以及一系列检验,由于大致都相同,仅仅是某些使用累加和累减,而另外一些则使用累加、累减和均值三个序列的差别而已。于是下面笔者将对其进行归纳总结再进行绘制思维导图,帮助读者理解。

(1)原始序列(参考数据列):

(2)1次累加序列(1-AGO):

(3)1次累减序列(1-IAGO):(也就是原始序列中,后一项依次减去前一项的值,例如,[x(2)-x(1),x(3-x(2),...,x(n)-x(n-1))]。)

(4)均值生成序列:(这是对累加序列"(前一项+后一项)/2"得出的结果。)

求解步骤:

image.png

三、灰色预测的实例讲解:


1.使用GM(1,1)的预测检验“北方某城市1986年-1992年道路噪声交通 平均声级数据:”

见下图:

image.png

x0 = [71.1 72.4 72.4 72.1 71.4 72 71.6]'; %这里是列向量,相当于原始数据中因变量
n = length(x0);
lamda = x0(1:n-1)./x0(2:n) %计算级比
range = minmax(lamda') %计算级比的范围
x1 = cumsum(x0)
B = [-0.5*(x1(1:n-1)+x1(2:n)),ones(n-1,1)]; %这是构造的数据矩阵B
Y = x0(2:n); %数据向量Y
u = B\Y  %拟合参数u(1)=a,u(2)=b
syms x(t)
x = dsolve(diff(x)+u(1)*x==u(2),x(0)==x0(1)); %建立模型求解
xt = vpa(x,6) %以小数格式显示微分方程的解
prediction1 = subs(x,t,[0:n-1]); %求已知数据的预测值
prediction1 = double(prediction1); %符号数转换成数值类型,以便做差分运算
prediction = [x0(1),diff(prediction1)] %差分运算,还原数据
epsilon = x0'-prediction %计算残差
delta = abs(epsilon./x0') %计算相对残差
rho = 1-(1-0.5*u(1))/(1+0.5*u(1))*lamda'%计算级比偏差值,u(1)=a

2.使用GM(2,1)的MATLAB实例:

题目:已知image.png=(41,90,61,78,96,104),试建立GM(2,1)模型。

%% -------------2.GM(2,1)预测模型-------------------%%
x0 = [41 49 61 78 96 104];
n = length(x0);
add_x0 = cumsum(x0);%1次累加序列
minus_x0 = diff(x0)'; %1次累减序列
z = 0.5*(add_x0(2:end)+add_x0(1:end-1))';%计算均值生成序列
B = [-x0(2:end)',-z,ones(n-1,1)];
u = B\minus_x0 %最小二乘法拟合参数
syms x(t)
x = dsolve(diff(x,2)+u(1)*diff(x)+u(2)*x == u(3),x(0) == add_x0(1),x(5) == add_x0(6)); %求符号解
xt = vpa(x,6) %显示小数形式的符号解
prediction = subs(x,t,0:n-1);
prediction = double(prediction);
x0_prediction = [prediction(1),diff(prediction)];%求已知数据点的预测值
x0_prediction = round(x0_prediction) %四舍五入取整数
epsilon = x0-x0_prediction %求残差
delta = abs(epsilon./x0) %求相对误差


目录
相关文章
|
机器学习/深度学习 算法 计算机视觉
基于FPGA的RGB图像转化为灰度图实现,通过MATLAB进行辅助验证
基于FPGA的RGB图像转化为灰度图实现,通过MATLAB进行辅助验证
|
2月前
|
机器学习/深度学习 算法 自动驾驶
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
185 8
|
6月前
|
算法 数据安全/隐私保护
基于Logistic-Map混沌序列的数字信息加解密算法matlab仿真,支持对文字,灰度图,彩色图,语音进行加解密
本项目实现了一种基于Logistic Map混沌序列的数字信息加解密算法,使用MATLAB2022A开发并包含GUI操作界面。支持对文字、灰度图像、彩色图像和语音信号进行加密与解密处理。核心程序通过调整Logistic Map的参数生成伪随机密钥序列,确保加密的安全性。混沌系统的不可预测性和对初值的敏感依赖性是该算法的核心优势。示例展示了彩色图像、灰度图像、语音信号及文字信息的加解密效果,运行结果清晰准确,且完整程序输出无水印。
基于Logistic-Map混沌序列的数字信息加解密算法matlab仿真,支持对文字,灰度图,彩色图,语音进行加解密
|
计算机视觉
【图像处理】基于灰度矩的亚像素边缘检测方法理论及MATLAB实现
基于灰度矩的亚像素边缘检测方法,包括理论基础和MATLAB实现,通过计算图像的灰度矩来精确定位边缘位置,并提供了详细的MATLAB代码和实验结果图。
390 6
|
机器学习/深度学习 传感器 算法
分类预测 | MATLAB实现BiLSTM双向长短期记忆神经网络多特征分类预测
分类预测 | MATLAB实现BiLSTM双向长短期记忆神经网络多特征分类预测
|
机器学习/深度学习 传感器 算法
【视频处理】通过调用图像来重建新影片及计算颜色通道的平均灰度值,并检测帧与前一帧之间的差异(Matlab代码实现)
【视频处理】通过调用图像来重建新影片及计算颜色通道的平均灰度值,并检测帧与前一帧之间的差异(Matlab代码实现)
|
存储 计算机视觉
MATLAB--数字图像处理 入门--分别提取图像三通道(RGB)灰度图
MATLAB--数字图像处理 入门--分别提取图像三通道(RGB)灰度图
1166 0
MATLAB--数字图像处理  入门--分别提取图像三通道(RGB)灰度图
|
计算机视觉
MATLAB--数字图像处理 绘画出图像灰度值的三维图像
MATLAB--数字图像处理 绘画出图像灰度值的三维图像
378 0
MATLAB--数字图像处理 绘画出图像灰度值的三维图像
MATLAB--图像空间尺度变换以及灰度梯度尺度变换
MATLAB--图像空间尺度变换以及灰度梯度尺度变换
362 0
MATLAB--图像空间尺度变换以及灰度梯度尺度变换
|
机器学习/深度学习 数据处理
【负荷预测】基于灰色理论负荷预测的应用研究(Matlab代码实现)
【负荷预测】基于灰色理论负荷预测的应用研究(Matlab代码实现)
【负荷预测】基于灰色理论负荷预测的应用研究(Matlab代码实现)

热门文章

最新文章