深度学习:AlexNet实现服装分类(Pytorch)

简介: 深度学习:AlexNet实现服装分类(Pytorch)

前置知识

Lenet-5服装分类
卷积神经网络详细指南
SGD+动量法
反向传播公式推导

表征学习

  1. 在2012年前,图像特征都是机械地计算出来的。事实上,设计一套新的特征函数、改进结果,并撰写论文是盛极一时的潮流。SIFT [Lowe, 2004]、SURF [Bay et al., 2006]、HOG(定向梯度直方图) [Dalal & Triggs, 2005]、bags of visual words和类似的特征提取方法占据了主导地位。
  2. 在2012年之后,另一组研究人员认为表征可以被学习,通过前面的卷积层提取了图片的底层信息,如检测边缘、颜色和纹理。在2012年,人们把alexnet 第一个卷积层提取的信息可视化:

在这里插入图片描述

由这些底层的信息,通过后面的全连接层训练,得到了高层的语义信息 ,如:鼻子、眼睛、嘴巴,更易于数据划分。
在这里插入图片描述

模型介绍

模型架构

2012年,AlexNet横空出世。它首次证明了学习到的特征可以超越手工设计的特征。它一举打破了计算机视觉研究的现状。
AlexNet使用了8层卷积神经网络,并以很大的优势赢得了2012年ImageNet图像识别挑战赛。

AlexNet和LeNet的架构非常相似,如 图7.1.2所示。
注意,这里我们提供了一个稍微精简版本的AlexNet,去除了当年需要两个小型GPU同时运算的设计特点。

架构如下:
在这里插入图片描述

模型特点

相比较与LeNet:

  1. 卷积核从33-> 先1111,然后55,接着是33。
  2. 激活函数从Sigmoid-> ReLu 让训练更稳定,ReLU计算更快。
  3. 新加入DropOut层与数据增强方法,Lenet只有权重衰减方法。
  4. 采用多种参数初始化。
  5. 均匀池化层->最大池化层,只保留激活最明显的feature。

代码实战

服装分类数据集

我们可以通过框架中的内置函数将Fashion-MNIST数据集下载并读取到内存中。

# 通过ToTensor实例将图像数据从PIL类型变换成32位浮点数格式,
# 并除以255使得所有像素的数值均在0到1之间
def load_data_fashion_mnist(batch_size, resize=None):  #@save
    """下载Fashion-MNIST数据集,然后将其加载到内存中"""
    trans = [transforms.ToTensor()]
    if resize:
        trans.insert(0, transforms.Resize(resize))
    trans = transforms.Compose(trans)#通过compose组合多个操作
    mnist_train = torchvision.datasets.FashionMNIST(
        root="../data", train=True, transform=trans, download=True)
    mnist_test = torchvision.datasets.FashionMNIST(
        root="../data", train=False, transform=trans, download=True)
    return (data.DataLoader(mnist_train, batch_size, shuffle=True,
                            num_workers=4),
            data.DataLoader(mnist_test, batch_size, shuffle=False,
                            num_workers=4))
                            #num workers 为线程数

定义模型



import torch
from torch import nn
from d2l import torch as d2l
net = nn.Sequential(
    # 这里,我们使用一个11*11的更大窗口来捕捉对象。
    # 同时,步幅为4,以减少输出的高度和宽度。
    # 另外,输出通道的数目远大于LeNet
    nn.Conv2d(1, 96, kernel_size=11, stride=4, padding=1), nn.ReLU(),
    nn.MaxPool2d(kernel_size=3, stride=2),
    # 减小卷积窗口,使用填充为2来使得输入与输出的高和宽一致,且增大输出通道数
    nn.Conv2d(96, 256, kernel_size=5, padding=2), nn.ReLU(),
    nn.MaxPool2d(kernel_size=3, stride=2),
    # 使用三个连续的卷积层和较小的卷积窗口。
    # 除了最后的卷积层,输出通道的数量进一步增加。
    # 在前两个卷积层之后,汇聚层不用于减少输入的高度和宽度
    nn.Conv2d(256, 384, kernel_size=3, padding=1), nn.ReLU(),
    nn.Conv2d(384, 384, kernel_size=3, padding=1), nn.ReLU(),
    nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(),
    nn.MaxPool2d(kernel_size=3, stride=2),
    nn.Flatten(),
    # 这里,全连接层的输出数量是LeNet中的好几倍。使用dropout层来减轻过拟合
    nn.Linear(6400, 4096), nn.ReLU(),
    nn.Dropout(p=0.5),
    nn.Linear(4096, 4096), nn.ReLU(),
    nn.Dropout(p=0.5),
    # 最后是输出层。由于这里使用Fashion-MNIST,所以用类别数为10,而非论文中的1000
    nn.Linear(4096, 10))
    

测试数据

def evaluate_accuracy_gpu(net, data_iter, device=None): #@save
    """使用GPU计算模型在数据集上的精度"""
    if isinstance(net, nn.Module):
        net.eval()  # 设置为评估模式
        if not device:
            device = next(iter(net.parameters())).device
    # 正确预测的数量,总预测的数量
    metric = d2l.Accumulator(2)#累加器
    
    with torch.no_grad():#禁止计算梯度
        for X, y in data_iter:
            if isinstance(X, list):
                # BERT微调所需的(之后将介绍)
                X = [x.to(device) for x in X]
            else:
                X = X.to(device)
            y = y.to(device)
            metric.add(d2l.accuracy(net(X), y), y.numel())
    return metric[0] / metric[1]

训练模型

#@save
def train_ch6(net, train_iter, test_iter, num_epochs, lr, device):
    """用GPU训练模型(在第六章定义)"""
    def init_weights(m):
        if type(m) == nn.Linear or type(m) == nn.Conv2d:
            nn.init.xavier_uniform_(m.weight)
    net.apply(init_weights)
    print('training on', device)
    net.to(device)
    optimizer = torch.optim.SGD(net.parameters(), lr=lr)
    loss = nn.CrossEntropyLoss()
    animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],
                            legend=['train loss', 'train acc', 'test acc'])
    timer, num_batches = d2l.Timer(), len(train_iter)
    for epoch in range(num_epochs):
        # 训练损失之和,训练准确率之和,样本数
        metric = d2l.Accumulator(3)
        net.train()
        for i, (X, y) in enumerate(train_iter):
            timer.start()
            optimizer.zero_grad()
            X, y = X.to(device), y.to(device)
            y_hat = net(X)
            l = loss(y_hat, y)
            l.backward()
            optimizer.step()#更新参数
            with torch.no_grad():
                metric.add(l * X.shape[0], d2l.accuracy(y_hat, y), X.shape[0])
            timer.stop()
            train_l = metric[0] / metric[2]
            train_acc = metric[1] / metric[2]
            if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
                animator.add(epoch + (i + 1) / num_batches,
                             (train_l, train_acc, None))
        test_acc = evaluate_accuracy_gpu(net, test_iter)
        animator.add(epoch + 1, (None, None, test_acc))
    print(f'loss {train_l:.3f}, train acc {train_acc:.3f}, '
          f'test acc {test_acc:.3f}')
    print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec '
          f'on {str(device)}')
train_iter, test_iter = load_data_fashion_mnist(256, resize=224)
train_ch6(net, train_iter, test_iter, 10, 0.01, d2l.try_gpu())

结果展示

在这里插入图片描述

相关实践学习
基于阿里云DeepGPU实例,用AI画唯美国风少女
本实验基于阿里云DeepGPU实例,使用aiacctorch加速stable-diffusion-webui,用AI画唯美国风少女,可提升性能至高至原性能的2.6倍。
目录
相关文章
|
2天前
|
机器学习/深度学习 PyTorch TensorFlow
Pytorch 与 Tensorflow:深度学习的主要区别(1)
Pytorch 与 Tensorflow:深度学习的主要区别(1)
16 2
|
2天前
|
机器学习/深度学习 PyTorch API
pytorch与深度学习
【5月更文挑战第3天】PyTorch,Facebook开源的深度学习框架,以其动态计算图和灵活API深受青睐。本文深入浅出地介绍PyTorch基础,包括动态计算图、张量和自动微分,通过代码示例演示简单线性回归和卷积神经网络的实现。此外,探讨了模型架构、自定义层、数据加载及预处理等进阶概念,并分享了实战技巧、问题解决方案和学习资源,助力读者快速掌握PyTorch。
33 5
|
2天前
|
机器学习/深度学习 PyTorch 算法框架/工具
【Python机器学习专栏】PyTorch在深度学习中的应用
【4月更文挑战第30天】PyTorch是流行的开源深度学习框架,基于动态计算图,易于使用且灵活。它支持张量操作、自动求导、优化器和神经网络模块,适合快速实验和模型训练。PyTorch的优势在于易用性、灵活性、社区支持和高性能(利用GPU加速)。通过Python示例展示了如何构建和训练神经网络。作为一个强大且不断发展的工具,PyTorch适用于各种深度学习任务。
|
2天前
|
机器学习/深度学习 自然语言处理 算法
PyTorch与NLP:自然语言处理的深度学习实战
随着人工智能技术的快速发展,自然语言处理(NLP)作为其中的重要分支,日益受到人们的关注。PyTorch作为一款强大的深度学习框架,为NLP研究者提供了强大的工具。本文将介绍如何使用PyTorch进行自然语言处理的深度学习实践,包括基础概念、模型搭建、数据处理和实际应用等方面。
|
2天前
|
机器学习/深度学习 传感器 数据可视化
MATLAB用深度学习长短期记忆 (LSTM) 神经网络对智能手机传感器时间序列数据进行分类
MATLAB用深度学习长短期记忆 (LSTM) 神经网络对智能手机传感器时间序列数据进行分类
MATLAB用深度学习长短期记忆 (LSTM) 神经网络对智能手机传感器时间序列数据进行分类
|
2天前
|
机器学习/深度学习 并行计算 PyTorch
PyTorch与CUDA:加速深度学习训练
【4月更文挑战第18天】本文介绍了如何使用PyTorch与CUDA加速深度学习训练。CUDA是NVIDIA的并行计算平台,常用于加速深度学习中的矩阵运算。PyTorch与CUDA集成,允许开发者将模型和数据迁移到GPU,利用`.to(device)`方法加速计算。通过批处理、并行化策略及优化技巧,如混合精度训练,可进一步提升训练效率。监控GPU内存和使用调试工具确保训练稳定性。PyTorch与CUDA的结合对深度学习训练的加速作用显著。
|
2天前
|
PyTorch 算法框架/工具 Android开发
PyTorch 深度学习(GPT 重译)(六)(4)
PyTorch 深度学习(GPT 重译)(六)
38 2
|
2天前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch 深度学习(GPT 重译)(六)(3)
PyTorch 深度学习(GPT 重译)(六)
30 2
|
2天前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch 深度学习(GPT 重译)(六)(2)
PyTorch 深度学习(GPT 重译)(六)
41 1
|
2天前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch 深度学习(GPT 重译)(六)(1)
PyTorch 深度学习(GPT 重译)(六)
39 1