深度学习:Tensorflow变量op和可视化TensorBoard

简介: 深度学习:Tensorflow变量op和可视化TensorBoard

变量op

变量也是一种op,是一种特殊的张量

能够进行存储持久化,它的值就是张量,默认被训练


变量op特点:

1、变量op能够持久化保存,普通张量op是不行的

2、当定义一个变量op的时候,一定要在会话中去运行初始化

3、name参数,在tensorboard显示名字,区分相同op


变量的创建


tf.Variable(initial_value=NOne, name=None, trainable=True)

赋值


assign(value)

返回变量值


eval(session=None)

初始化所有变量op


tf.global_varibles_initializer()

可视化学习TensorBoard

数据序列化 events事件文件

TensorBoard通过读取TensorFlow的事件文件来运行


filewriter = tf.summary.FileWriter("/temp/", graph)

写入事件文件到指定目录(最好是绝对路径),以提供tensorboard使用


开启


$ tensorboard --logdir="/temp/"

打开浏览器 127.0.0.1:6006


代码示例

# -*- coding: utf-8 -*-
import tensorflow as tf
a = tf.constant([1, 2, 3], name="a")
b = tf.constant(3.0, name="b")
c = tf.constant(3.0, name="c")
e = tf.add(b, c, name="add")
var = tf.Variable(tf.random_normal((2, 3), mean=0.0, stddev=1.0), name="name")
print(a, var)
# Tensor("Const:0", shape=(3,), dtype=int32)
# <tf.Variable 'Variable:0' shape=(2, 3) dtype=float32_ref>
# 显示初始化op
init_op = tf.global_variables_initializer()
with tf.Session() as session:
    # 必须运行初始化op
    session.run(init_op)
    # 把程序的graph图结构写入事件文件
    filewriter = tf.summary.FileWriter("temp/", graph=session.graph)
    print(session.run([a, var]))
    # [array([1, 2, 3], dtype=int32),
    # array([[ 1.0577981 , -1.1390951 , -0.12928246],
    #   [ 1.2623566 ,  0.7676961 ,  0.46882382]], dtype=float32)]

增加变量显示

目的:观察模型的参数,损失值等变量值的变化


1、收集变量


# 收集对于损失函数和准确率等单值变量
tf.summary.scalar(name="", tensor)
# 收集高纬度的变量参数
tf.summary.histogram(name="", tensor)
# 收集输入的图片张量能显示图片
tf.summary.image(name="", tensor)

2、合并变量写入事件文件


merged = tf.summary.merge_all()
# 合并运行,每次迭代都需要运行
summary = sess.run(merged)
# 添加,i表示第几次的值
FileWriter.add_summary(summary, i)
相关文章
|
2月前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
356 55
|
4月前
|
机器学习/深度学习 数据可视化 Windows
深度学习笔记(七):如何用Mxnet来将神经网络可视化
这篇文章介绍了如何使用Mxnet框架来实现神经网络的可视化,包括环境依赖的安装、具体的代码实现以及运行结果的展示。
71 0
|
3月前
|
机器学习/深度学习 数据采集 数据可视化
TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤
本文介绍了 TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤,包括数据准备、模型定义、损失函数与优化器选择、模型训练与评估、模型保存与部署,并展示了构建全连接神经网络的具体示例。此外,还探讨了 TensorFlow 的高级特性,如自动微分、模型可视化和分布式训练,以及其在未来的发展前景。
351 5
|
3月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
141 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
3月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
179 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
3月前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
175 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
3月前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
145 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
3月前
|
机器学习/深度学习 人工智能 TensorFlow
基于TensorFlow的深度学习模型训练与优化实战
基于TensorFlow的深度学习模型训练与优化实战
151 0
|
5月前
|
机器学习/深度学习 人工智能 算法
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
鸟类识别系统。本系统采用Python作为主要开发语言,通过使用加利福利亚大学开源的200种鸟类图像作为数据集。使用TensorFlow搭建ResNet50卷积神经网络算法模型,然后进行模型的迭代训练,得到一个识别精度较高的模型,然后在保存为本地的H5格式文件。在使用Django开发Web网页端操作界面,实现用户上传一张鸟类图像,识别其名称。
163 12
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
|
6月前
|
机器学习/深度学习 人工智能 TensorFlow
深度学习入门:使用Python和TensorFlow构建你的第一个神经网络
【8月更文挑战第31天】 本文是一篇面向初学者的深度学习指南,旨在通过简洁明了的语言引导读者了解并实现他们的第一个神经网络。我们将一起探索深度学习的基本概念,并逐步构建一个能够识别手写数字的简单模型。文章将展示如何使用Python语言和TensorFlow框架来训练我们的网络,并通过直观的例子使抽象的概念具体化。无论你是编程新手还是深度学习领域的新兵,这篇文章都将成为你探索这个激动人心领域的垫脚石。

热门文章

最新文章