深度学习:Tensorflow变量op和可视化TensorBoard

简介: 深度学习:Tensorflow变量op和可视化TensorBoard

变量op

变量也是一种op,是一种特殊的张量

能够进行存储持久化,它的值就是张量,默认被训练


变量op特点:

1、变量op能够持久化保存,普通张量op是不行的

2、当定义一个变量op的时候,一定要在会话中去运行初始化

3、name参数,在tensorboard显示名字,区分相同op


变量的创建


tf.Variable(initial_value=NOne, name=None, trainable=True)

赋值


assign(value)

返回变量值


eval(session=None)

初始化所有变量op


tf.global_varibles_initializer()

可视化学习TensorBoard

数据序列化 events事件文件

TensorBoard通过读取TensorFlow的事件文件来运行


filewriter = tf.summary.FileWriter("/temp/", graph)

写入事件文件到指定目录(最好是绝对路径),以提供tensorboard使用


开启


$ tensorboard --logdir="/temp/"

打开浏览器 127.0.0.1:6006


代码示例

# -*- coding: utf-8 -*-
import tensorflow as tf
a = tf.constant([1, 2, 3], name="a")
b = tf.constant(3.0, name="b")
c = tf.constant(3.0, name="c")
e = tf.add(b, c, name="add")
var = tf.Variable(tf.random_normal((2, 3), mean=0.0, stddev=1.0), name="name")
print(a, var)
# Tensor("Const:0", shape=(3,), dtype=int32)
# <tf.Variable 'Variable:0' shape=(2, 3) dtype=float32_ref>
# 显示初始化op
init_op = tf.global_variables_initializer()
with tf.Session() as session:
    # 必须运行初始化op
    session.run(init_op)
    # 把程序的graph图结构写入事件文件
    filewriter = tf.summary.FileWriter("temp/", graph=session.graph)
    print(session.run([a, var]))
    # [array([1, 2, 3], dtype=int32),
    # array([[ 1.0577981 , -1.1390951 , -0.12928246],
    #   [ 1.2623566 ,  0.7676961 ,  0.46882382]], dtype=float32)]

增加变量显示

目的:观察模型的参数,损失值等变量值的变化


1、收集变量


# 收集对于损失函数和准确率等单值变量
tf.summary.scalar(name="", tensor)
# 收集高纬度的变量参数
tf.summary.histogram(name="", tensor)
# 收集输入的图片张量能显示图片
tf.summary.image(name="", tensor)

2、合并变量写入事件文件


merged = tf.summary.merge_all()
# 合并运行,每次迭代都需要运行
summary = sess.run(merged)
# 添加,i表示第几次的值
FileWriter.add_summary(summary, i)
相关文章
|
1月前
|
机器学习/深度学习 数据可视化 Windows
深度学习笔记(七):如何用Mxnet来将神经网络可视化
这篇文章介绍了如何使用Mxnet框架来实现神经网络的可视化,包括环境依赖的安装、具体的代码实现以及运行结果的展示。
54 0
|
9天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
38 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
9天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
30 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
9天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
48 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
25天前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
72 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
2月前
|
机器学习/深度学习 人工智能 算法
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
鸟类识别系统。本系统采用Python作为主要开发语言,通过使用加利福利亚大学开源的200种鸟类图像作为数据集。使用TensorFlow搭建ResNet50卷积神经网络算法模型,然后进行模型的迭代训练,得到一个识别精度较高的模型,然后在保存为本地的H5格式文件。在使用Django开发Web网页端操作界面,实现用户上传一张鸟类图像,识别其名称。
109 12
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
|
3月前
|
机器学习/深度学习 算法 TensorFlow
深入探索强化学习与深度学习的融合:使用TensorFlow框架实现深度Q网络算法及高效调试技巧
【8月更文挑战第31天】强化学习是机器学习的重要分支,尤其在深度学习的推动下,能够解决更为复杂的问题。深度Q网络(DQN)结合了深度学习与强化学习的优势,通过神经网络逼近动作价值函数,在多种任务中表现出色。本文探讨了使用TensorFlow实现DQN算法的方法及其调试技巧。DQN通过神经网络学习不同状态下采取动作的预期回报Q(s,a),处理高维状态空间。
55 1
|
2月前
|
机器学习/深度学习 数据挖掘 TensorFlow
解锁Python数据分析新技能,TensorFlow&PyTorch双引擎驱动深度学习实战盛宴
在数据驱动时代,Python凭借简洁的语法和强大的库支持,成为数据分析与机器学习的首选语言。Pandas和NumPy是Python数据分析的基础,前者提供高效的数据处理工具,后者则支持科学计算。TensorFlow与PyTorch作为深度学习领域的两大框架,助力数据科学家构建复杂神经网络,挖掘数据深层价值。通过Python打下的坚实基础,结合TensorFlow和PyTorch的强大功能,我们能在数据科学领域探索无限可能,解决复杂问题并推动科研进步。
63 0
|
2月前
|
机器学习/深度学习 数据挖掘 TensorFlow
从数据小白到AI专家:Python数据分析与TensorFlow/PyTorch深度学习的蜕变之路
【9月更文挑战第10天】从数据新手成长为AI专家,需先掌握Python基础语法,并学会使用NumPy和Pandas进行数据分析。接着,通过Matplotlib和Seaborn实现数据可视化,最后利用TensorFlow或PyTorch探索深度学习。这一过程涉及从数据清洗、可视化到构建神经网络的多个步骤,每一步都需不断实践与学习。借助Python的强大功能及各类库的支持,你能逐步解锁数据的深层价值。
65 0
|
3月前
|
机器学习/深度学习 IDE API
【Tensorflow+keras】Keras 用Class类封装的模型如何调试call子函数的模型内部变量
该文章介绍了一种调试Keras中自定义Layer类的call方法的方法,通过直接调用call方法并传递输入参数来进行调试。
35 4

热门文章

最新文章