【图像分割】基于花朵授粉算法实现图像的自适应多阈值快速分割附matlab代码

本文涉及的产品
视觉智能开放平台,分割抠图1万点
视觉智能开放平台,图像资源包5000点
视觉智能开放平台,视频资源包5000点
简介: 【图像分割】基于花朵授粉算法实现图像的自适应多阈值快速分割附matlab代码

1 内容介绍

为快速准确地将图像中目标和背景分离开来,将新型群体智能模型中的花朵授粉算法、最大类间阈值相结合,提出了一种图像分割新方法.该方法将图像阈值看成花朵授粉算法群算法中的花粉,利用信息熵和最大熵原理设计花朵授粉算法的适应度函数,逐代逼近最佳阈值.并利用Matlab实现了图像分割算法,对分割的结果进行分析.实验结果表明,该方法在阈值分割图像时,花朵授粉算法能够快速准确地将图像目标分离出来,分离出来的目标更加适合后序的分析和处理.

2 部分代码

% --------------------------------------------------------------------%

% Flower pollenation algorithm (FPA), or flower algorithm             %

% Programmed by Xin-She Yang @ May 2012                               %

% --------------------------------------------------------------------%


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Notes: This demo program contains the very basic components of      %

% the flower pollination algorithm (FPA), or flower algorithm (FA),   %

% for single objective optimization.    It usually works well for     %

% unconstrained functions only. For functions/problems with           %

% limits/bounds and constraints, constraint-handling techniques       %

% should be implemented to deal with constrained problems properly.   %

%                                                                     %

% Citation details:                                                   %

%1)Xin-She Yang, Flower pollination algorithm for global optimization,%

% Unconventional Computation and Natural Computation,                 %

% Lecture Notes in Computer Science, Vol. 7445, pp. 240-249 (2012).   %

%2)X. S. Yang, M. Karamanoglu, X. S. He, Multi-objective flower       %

% algorithm for optimization, Procedia in Computer Science,           %

% vol. 18, pp. 861-868 (2013).                                        %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%


clc

clear all

close all

n=30;           % Population size, typically 10 to 25

p=0.8;           % probabibility switch


% Iteration parameters

N_iter=3000;            % Total number of iterations

fitnessMSE = ones(1,N_iter);


% % Dimension of the search variables Example 1

d=2;

Lb = -1*ones(1,d);

Ub = 1*ones(1,d);



% % Dimension of the search variables Example 2

% d=3;

% Lb = [-2 -1 -1];

% Ub = [2 1 1];


%

% % Dimension of the search variables Example 3

% d=3;

% Lb = [-1 -1 -1];

% Ub = [1 1 1];

%

%

% % % Dimension of the search variables Example 4

% d=9;

% Lb = -1.5*ones(1,d);

% Ub = 1.5*ones(1,d);


% Initialize the population/solutions

for i=1:n,

   Sol(i,:)=Lb+(Ub-Lb).*rand(1,d);

   % To simulate the filters use fitnessX() functions in the next line

   Fitness(i)=fitness(Sol(i,:));

end


% Find the current best

[fmin,I]=min(Fitness);

best=Sol(I,:);

S=Sol;


% Start the iterations -- Flower Algorithm

for t=1:N_iter,

   % Loop over all bats/solutions

   for i=1:n,

       % Pollens are carried by insects and thus can move in

       % large scale, large distance.

       % This L should replace by Levy flights

       % Formula: x_i^{t+1}=x_i^t+ L (x_i^t-gbest)

       if rand>p,

           %% L=rand;

           L=Levy(d);

           dS=L.*(Sol(i,:)-best);

           S(i,:)=Sol(i,:)+dS;

           

           % Check if the simple limits/bounds are OK

           S(i,:)=simplebounds(S(i,:),Lb,Ub);

           

           % If not, then local pollenation of neighbor flowers

       else

           epsilon=rand;

           % Find random flowers in the neighbourhood

           JK=randperm(n);

           % As they are random, the first two entries also random

           % If the flower are the same or similar species, then

           % they can be pollenated, otherwise, no action.

           % Formula: x_i^{t+1}+epsilon*(x_j^t-x_k^t)

           S(i,:)=S(i,:)+epsilon*(Sol(JK(1),:)-Sol(JK(2),:));

           % Check if the simple limits/bounds are OK

           S(i,:)=simplebounds(S(i,:),Lb,Ub);

       end

       

       % Evaluate new solutions

       % To simulate the filters use fitnessX() functions in the next

       % line

       Fnew=fitness(S(i,:));

       % If fitness improves (better solutions found), update then

       if (Fnew<=Fitness(i)),

           Sol(i,:)=S(i,:);

           Fitness(i)=Fnew;

       end

       

       % Update the current global best

       if Fnew<=fmin,

           best=S(i,:)   ;

           fmin=Fnew   ;

       end

   end

   % Display results every 100 iterations

   if round(t/100)==t/100,

       best

       fmin

   end

   

   fitnessMSE(t) = fmin;

   

end

%figure, plot(1:N_iter,fitnessMSE);

% Output/display

disp(['Total number of evaluations: ',num2str(N_iter*n)]);

disp(['Best solution=',num2str(best),'   fmin=',num2str(fmin)]);

figure(1)

plot( fitnessMSE)

xlabel('Iteration');

ylabel('Best score obtained so far');

3 运行结果

4 参考文献

[1]李小琦. 基于Matlab的图像阈值分割算法研究[J]. 软件导刊, 2014, 13(12):3.

[2]霍凤财等. "基于人工蜂群算法的图像阈值分割." 自动化技术与应用 035.002(2016):112-116.

博主简介:擅长智能优化算法神经网络预测信号处理元胞自动机图像处理路径规划无人机雷达通信无线传感器等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。


相关文章
|
4天前
|
JavaScript 前端开发 算法
JavaScript 中通过Array.sort() 实现多字段排序、排序稳定性、随机排序洗牌算法、优化排序性能,JS中排序算法的使用详解(附实际应用代码)
Array.sort() 是一个功能强大的方法,通过自定义的比较函数,可以处理各种复杂的排序逻辑。无论是简单的数字排序,还是多字段、嵌套对象、分组排序等高级应用,Array.sort() 都能胜任。同时,通过性能优化技巧(如映射排序)和结合其他数组方法(如 reduce),Array.sort() 可以用来实现高效的数据处理逻辑。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
1月前
|
机器学习/深度学习 存储 算法
近端策略优化(PPO)算法的理论基础与PyTorch代码详解
近端策略优化(PPO)是深度强化学习中高效的策略优化方法,广泛应用于大语言模型的RLHF训练。PPO通过引入策略更新约束机制,平衡了更新幅度,提升了训练稳定性。其核心思想是在优势演员-评论家方法的基础上,采用裁剪和非裁剪项组成的替代目标函数,限制策略比率在[1-ϵ, 1+ϵ]区间内,防止过大的策略更新。本文详细探讨了PPO的基本原理、损失函数设计及PyTorch实现流程,提供了完整的代码示例。
290 10
近端策略优化(PPO)算法的理论基础与PyTorch代码详解
|
3月前
|
存储 算法 程序员
C 语言递归算法:以简洁代码驾驭复杂逻辑
C语言递归算法简介:通过简洁的代码实现复杂的逻辑处理,递归函数自我调用解决分层问题,高效而优雅。适用于树形结构遍历、数学计算等领域。
|
4月前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
109 1
|
4月前
|
存储 缓存 算法
通过优化算法和代码结构来提升易语言程序的执行效率
通过优化算法和代码结构来提升易语言程序的执行效率
114 2
|
4月前
|
算法
分享一些提高二叉树遍历算法效率的代码示例
这只是简单的示例代码,实际应用中可能还需要根据具体需求进行更多的优化和处理。你可以根据自己的需求对代码进行修改和扩展。
|
4月前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
4月前
|
算法 测试技术 开发者
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗;代码审查通过检查源代码发现潜在问题,提高代码质量和团队协作效率。本文介绍了一些实用的技巧和工具,帮助开发者提升开发效率。
76 3
|
4月前
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
|
7月前
|
机器学习/深度学习 人工智能 自然语言处理
【自然语言处理】TF-IDF算法在人工智能方面的应用,附带代码
TF-IDF算法在人工智能领域,特别是自然语言处理(NLP)和信息检索中,被广泛用于特征提取和文本表示。以下是一个使用Python的scikit-learn库实现TF-IDF算法的简单示例,并展示如何将其应用于文本数据。
335 65

热门文章

最新文章