数据分析三剑客【AIoT阶段一(下)】(十万字博文 保姆级讲解)—Matplotlib—数据可视化进阶(十七)

简介: 你好,感谢你能点进来本篇博客,请不要着急退出,相信我,如果你有一定的 Python 基础,想要学习 Python数据分析的三大库:numpy,pandas,matplotlib;这篇文章不会让你失望,本篇博客是 【AIoT阶段一(下)】 的内容:Python数据分析,

3.4 训练场

3.4.1 数据处理

  1. 加载数据,并查看相关信息:基金总数据条目,基金公司数量,基金总数量,基金总规模,查看前五条数据
  2. 将基金规模小于1亿元的数据过滤掉,将基金收益没有数据的过滤掉。
  3. 将基金规模和基金收益转换为浮点数,并将处理好的数据保存。


首先我们需要下载一个 Excel 文件:

链接: https://pan.baidu.com/s/1j2pn0vVN3-wJmSZ-01oiUg?pwd=niye

提取码: niye


下载完成之后,把该文件和我们的代码放到同一个文件夹下,这一操作我们在之前的博客中已经反复说到,这里就不再进行演示

数据查看:

import numpy as np
import pandas as pd
fund = pd.read_excel('./fund.xlsx')
print('基金总数据条目:', fund.shape)
print('基金公司一共有:', fund['公司'].nunique()) # 去重
print('基金总数量是:', fund['基金数量'].sum())
# 计算基金总规模
cnt = fund['基金规模'].str.endswith('亿元') # 判断是否以'亿元'结尾
fund2 = fund[cnt]     # 数据筛选
size = fund2['基金规模'].str[: -2].astype('float').sum() # 去掉'亿元'
print('基金总规模是:%0.2f亿元' % (size))
print('查看前五条数据:')
fund.head(5)

image.png

数据清洗:

import pandas as pd
fund = pd.read_excel('./fund.xlsx')
print('数据清洗前:', fund.shape)
# 过滤基金规模为空的数据
cnt = fund['基金规模'].str.endswith('亿元')
fund = fund[cnt]
# 过滤基金规模小于1亿的数据
cnt2 = fund['基金规模'].str[: -2].astype('float') > 1
fund = fund[cnt2]
# 过滤基金收益为空的数据
cnt3 = fund['基金收益'].str.endswith('%')
fund = fund[cnt3]
print('数据清洗后:', fund.shape)
fund.to_excel('./fund_clean.xlsx', index = False)
fund.head()

image.png

数据转换:

import pandas as pd
fund = pd.read_excel('./fund_clean.xlsx')
# 基金规模字符串转变为浮点数
fund['基金规模'] = fund['基金规模'].str[: -2].astype('float')
# 基金收益字符串转变为浮点数
def convert(x):
    x = x[: -1]
    x = float(x)
    return x
fund['基金收益'] = fund['基金收益'].apply(convert)
# 修改列名
fund.columns = ['姓名', '公司', '基金数量', '年', '天', '基金规模(亿元)', '基金收益(%)']
# 数据保存
fund.to_excel('./fund_end.xlsx', index = False)
fund.head(10)

1.png

3.4.2 数据挖掘与可视化

根据基金总规模,进行排序,水平条形图展示前十大公司

根据收益率,对所有数据进行降序排名,绘制前十佳基金经理。并将金额和收益率绘制到图片中。

十大基金公司:

%%time
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
plt.figure(figsize = (12, 9))
sns.set_theme(style = 'darkgrid', context = 'talk', font = 'KaiTi')
fund = pd.read_excel('./fund_end.xlsx')
# 分组聚合
com = fund.groupby(by = '公司')[['基金规模(亿元)']].sum()
# 排序
com.sort_values(by = '基金规模(亿元)', 
                ascending = False,  # 降序排序
                inplace = True)     # 直接对原数据进行替换
# 行索引重置:变成自然数索引
com.reset_index(inplace = True)
# 画条形图
sns.barplot(x = '基金规模(亿元)', y = '公司',  # x轴和y轴
            data = com.iloc[: 10],    # 切片出来前十个
            orient = 'h')  # 水平条形图

2.png

收益十佳基金经理:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
plt.figure(figsize = (12, 9))
sns.set_theme(style = 'darkgrid', context = 'talk', font = 'STKaiti')
fund = pd.read_excel('./fund_end.xlsx')
# 降序排序并直接替换原数据
fund.sort_values(by = '基金收益(%)', ascending = False, inplace = True)
sns.barplot(x = '基金收益(%)', y = '姓名',  
            data = fund.iloc[:10], orient = 'h',
            palette = 'Set1')  # 画板、颜色
for i in range(10):
    rate = fund.iloc[i]['基金收益(%)']
    pe = fund.iloc[i]['基金规模(亿元)']
    # 绘制基金规模
    plt.text(x = rate / 2, y = i, s = str(pe) + '亿元', ha = 'center', va = 'center')
    # 绘制基金收益
    plt.text(x = rate + 50, y = i, s = str(rate) + '%', va = 'center')
_ = plt.xlim(0, 2500) # 横坐标范围
_ = plt.xticks(np.arange(0, 2500, 200)) # 横坐标刻度    

3.png

目录
相关文章
|
2月前
|
数据可视化 数据挖掘 Linux
震撼发布!Python数据分析师必学,Matplotlib与Seaborn数据可视化实战全攻略!
在数据科学领域,数据可视化是连接数据与洞察的桥梁,能让复杂的关系变得直观。本文通过实战案例,介绍Python数据分析师必备的Matplotlib与Seaborn两大可视化工具。首先,通过Matplotlib绘制基本折线图;接着,使用Seaborn绘制统计分布图;最后,结合两者在同一图表中展示数据分布与趋势,帮助你提升数据可视化技能,更好地讲述数据故事。
44 1
|
1月前
|
数据可视化 数据挖掘 API
Python中的数据可视化利器:Matplotlib与Seaborn对比解析
在Python数据科学领域,数据可视化是一个重要环节。它不仅帮助我们理解数据,更能够让我们洞察数据背后的故事。本文将深入探讨两种广泛使用的数据可视化库——Matplotlib与Seaborn,通过对比它们的特点、优劣势以及适用场景,为读者提供一个清晰的选择指南。无论是初学者还是有经验的开发者,都能从中找到有价值的信息,提升自己的数据可视化技能。
62 3
|
2月前
|
存储 数据可视化 数据挖掘
揭秘!Matplotlib与Seaborn联手,如何让Python数据分析结果一目了然,惊艳全场?
在数据驱动时代,高效直观地展示分析结果至关重要。Python中的Matplotlib与Seaborn是两大可视化工具,结合使用可生成美观且具洞察力的图表。本文通过分析某电商平台的商品销量数据集,展示了如何利用这两个库揭示商品类别与月份间的销售关系及价格对销量的影响。首先使用Matplotlib绘制月份销量分布直方图,再借助Seaborn的箱线图进一步探索不同类别和价格区间下的销量稳定性。
58 10
|
14天前
|
数据可视化 定位技术 Python
Python数据可视化--Matplotlib--入门
Python数据可视化--Matplotlib--入门
18 0
|
2月前
|
数据可视化 数据挖掘 开发者
数据可视化新纪元!Python + Matplotlib + Seaborn,让你的数据故事生动起来!
在这个数据可视化的新纪元,让我们充分发挥 Python 的优势,用精彩的图表讲述数据背后的故事,为决策提供有力的支持,为交流带来清晰的视角。
31 4
|
2月前
|
机器学习/深度学习 数据可视化 数据挖掘
数据可视化大不同!Python数据分析与机器学习中的Matplotlib、Seaborn应用新视角!
在数据科学与机器学习领域,数据可视化是理解数据和优化模型的关键。Python凭借其强大的可视化库Matplotlib和Seaborn成为首选语言。本文通过分析一份包含房屋面积、卧室数量等特征及售价的数据集,展示了如何使用Matplotlib绘制散点图,揭示房屋面积与售价的正相关关系;并利用Seaborn的pairplot探索多变量间的关系。在机器学习建模阶段,通过随机森林模型展示特征重要性的可视化,帮助优化模型。这两个库在数据分析与建模中展现出广泛的应用价值。
44 2
|
2月前
|
Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
|
2月前
|
数据可视化 Python
Python中的数据可视化:使用Matplotlib绘制图表
【9月更文挑战第11天】在这篇文章中,我们将探索如何使用Python的Matplotlib库来创建各种数据可视化。我们将从基本的折线图开始,然后逐步介绍如何添加更多的功能和样式,以使您的图表更具吸引力和信息量。无论您是数据科学家、分析师还是任何需要将数据转化为视觉形式的专业人士,这篇文章都将为您提供一个坚实的起点。让我们一起潜入数据的海洋,用视觉的力量揭示其背后的故事。
49 16
|
2月前
|
数据可视化 数据挖掘 API
使用Python进行数据可视化:探索Matplotlib和Seaborn库
【9月更文挑战第19天】在数据科学领域,将复杂的数据集转换成直观、易懂的图形是一项基本而关键的技能。本文旨在通过Python编程语言介绍两个强大的数据可视化库——Matplotlib和Seaborn,以及它们如何帮助数据分析师和研究人员揭示数据背后的故事。我们将从基础概念讲起,逐步深入到高级技巧,确保无论读者的背景如何,都能获得必要的知识和启发,以在自己的项目中实现有效的数据可视化。
|
2月前
|
机器学习/深度学习 数据采集 监控
Pandas与Matplotlib:Python中的动态数据可视化
Pandas与Matplotlib:Python中的动态数据可视化