Python数据分析系列02-Iphone手机2020年指标分析

简介: 我相信每一件事情经过长时期的努力就一定能够得到一个好的结果的,看到别人做出成绩了,那是他们经过长时间摸索得到的回报,没有什么好羡慕的。你只要坚持下去,总有一天,相信自己现在做的事情也能给你带来好的回报,前提是,坚持 ! 一定轻易不能放弃。

数据

image.png

实战

1、读取表格数据

import pandas

data = pandas.ExcelFile('数字经济.xlsx')
sheet_names = data.sheet_names
print(sheet_names)

image.png

2、读取某个单元格中数据

for sheet in sheet_names:
    if sheet == '2020年指标':
        # 读取2020年指标
        df = pandas.read_excel('数字经济.xlsx', sheet_name=sheet)
        print(df)

image.png

3、剔除不需要的数据

 df = df.iloc[1:, :]
 # 修改表前2行的数据并将表头修改
 df.columns = df.iloc[0:2, :].values[0]
  # 提取数据
  print(df)

image.png

4、选中某列数据进行提取

sl_df = df["移动电话基站(万个)"]
# 提取值
salary = df.values
print(salary)

image.png

5、继续处理数据,以满足数据分析的需求

# 0 是城市
city = [city[0] for city in salary]
print(city)
# 1 是移动电话基站(万个)
iphone_01 = [city[1] for city in salary]
# 2 移动电话普及率(部/百人)
iphone_02 = [city[2] for city in salary]
print(iphone_02)

image.png

6、数据分析可视化

import matplotlib.pyplot as plt
import matplotlib

size = list()
for font_size in iphone_02:
    size.append(font_size) if font_size > 100 else size.append(100)
# 设置字体 
font = {'family': 'simHei',
        'weight': 'bold',
        'size': '12'}
matplotlib.rc('font', **font)
plt.figure(figsize=(10, 10), dpi=80)
plt.scatter(iphone_01, iphone_02, s=size,c='red')

plt.xlabel("移动电话基站(万个)", fontdict={'size': 16})
plt.ylabel("移动电话普及率(部/百人)", fontdict={'size': 16})
plt.title("2020年指标", fontdict={'size': 20})

plt.savefig('手机基站数据分析.png',dpi=80)
plt.show()

散点图

image.png

折线图

image.png

如果学习上有遇到问题,加/:yiyi990805(备注:阿里云tony)即可。

在这个浮躁的时代;竟然还有人能坚持篇篇原创;

如果本文对你学习有所帮助-可以点赞👍+ 关注!将持续更新更多新的文章。

支持原创。感谢!

相关文章
|
1月前
|
缓存 Rust 算法
从混沌到秩序:Python的依赖管理工具分析
Python 的依赖管理工具一直没有标准化,主要原因包括历史发展的随意性、社区的分散性、多样化的使用场景、向后兼容性的挑战、缺乏统一治理以及生态系统的快速变化。依赖管理工具用于处理项目中的依赖关系,确保不同环境下的依赖项一致性,避免软件故障和兼容性问题。常用的 Python 依赖管理工具如 pip、venv、pip-tools、Pipenv、Poetry 等各有优缺点,选择时需根据项目需求权衡。新工具如 uv 和 Pixi 在性能和功能上有所改进,值得考虑。
91 35
|
2月前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品消费模式分析的深度学习模型
使用Python实现智能食品消费模式分析的深度学习模型
158 70
|
1月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python实现基于矩阵分解的长期事件(MFLEs)时间序列分析
在现代数据分析中,高维时间序列数据的处理和预测极具挑战性。基于矩阵分解的长期事件(MFLEs)分析技术应运而生,通过降维和时间序列特性结合,有效应对大规模数据。MFLE利用矩阵分解提取潜在特征,降低计算复杂度,过滤噪声,并发现主要模式。相比传统方法如ARIMA和深度学习模型如LSTM,MFLE在多变量处理、计算效率和可解释性上更具优势。通过合理应用MFLE,可在物联网、金融等领域获得良好分析效果。
72 0
使用Python实现基于矩阵分解的长期事件(MFLEs)时间序列分析
|
1月前
|
数据采集 数据可视化 数据挖掘
金融波动率的多模型建模研究:GARCH族与HAR模型的Python实现与对比分析
本文探讨了金融资产波动率建模中的三种主流方法:GARCH、GJR-GARCH和HAR模型,基于SPY的实际交易数据进行实证分析。GARCH模型捕捉波动率聚类特征,GJR-GARCH引入杠杆效应,HAR整合多时间尺度波动率信息。通过Python实现模型估计与性能比较,展示了各模型在风险管理、衍生品定价等领域的应用优势。
304 66
金融波动率的多模型建模研究:GARCH族与HAR模型的Python实现与对比分析
|
2月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
本文将引导读者了解如何使用Python进行数据分析,从安装必要的库到执行基础的数据操作和可视化。通过本文的学习,你将能够开始自己的数据分析之旅,并掌握如何利用Python来揭示数据背后的故事。
|
27天前
|
并行计算 安全 Java
Python GIL(全局解释器锁)机制对多线程性能影响的深度分析
在Python开发中,GIL(全局解释器锁)一直备受关注。本文基于CPython解释器,探讨GIL的技术本质及其对程序性能的影响。GIL确保同一时刻只有一个线程执行代码,以保护内存管理的安全性,但也限制了多线程并行计算的效率。文章分析了GIL的必要性、局限性,并介绍了多进程、异步编程等替代方案。尽管Python 3.13计划移除GIL,但该特性至少要到2028年才会默认禁用,因此理解GIL仍至关重要。
128 16
Python GIL(全局解释器锁)机制对多线程性能影响的深度分析
|
1月前
|
数据可视化 算法 数据挖掘
Python时间序列分析工具Aeon使用指南
**Aeon** 是一个遵循 scikit-learn API 风格的开源 Python 库,专注于时间序列处理。它提供了分类、回归、聚类、预测建模和数据预处理等功能模块,支持多种算法和自定义距离度量。Aeon 活跃开发并持续更新至2024年,与 pandas 1.4.0 版本兼容,内置可视化工具,适合数据探索和基础分析任务。尽管在高级功能和性能优化方面有提升空间,但其简洁的 API 和完整的基础功能使其成为时间序列分析的有效工具。
87 37
Python时间序列分析工具Aeon使用指南
|
1月前
|
机器学习/深度学习 运维 数据可视化
Python时间序列分析:使用TSFresh进行自动化特征提取
TSFresh 是一个专门用于时间序列数据特征自动提取的框架,支持分类、回归和异常检测等机器学习任务。它通过自动化特征工程流程,处理数百个统计特征(如均值、方差、自相关性等),并通过假设检验筛选显著特征,提升分析效率。TSFresh 支持单变量和多变量时间序列数据,能够与 scikit-learn 等库无缝集成,适用于大规模时间序列数据的特征提取与模型训练。其工作流程包括数据格式转换、特征提取和选择,并提供可视化工具帮助理解特征分布及与目标变量的关系。
83 16
Python时间序列分析:使用TSFresh进行自动化特征提取
|
2月前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品消费习惯分析的深度学习模型
使用Python实现智能食品消费习惯分析的深度学习模型
190 68
|
8天前
|
机器学习/深度学习 存储 数据可视化
这份Excel+Python飞速搞定数据分析手册,简直可以让Excel飞起来
本书介绍了如何将Python与Excel结合使用,以提升数据分析和处理效率。内容涵盖Python入门、pandas库的使用、通过Python包操作Excel文件以及使用xlwings对Excel进行编程。书中详细讲解了Anaconda、Visual Studio Code和Jupyter笔记本等开发工具,并探讨了NumPy、DataFrame和Series等数据结构的应用。此外,还介绍了多个Python包(如OpenPyXL、XlsxWriter等)用于在无需安装Excel的情况下读写Excel文件,帮助用户实现自动化任务和数据处理。

热门文章

最新文章

  • 1
    【02】整体试验思路,在这之前我们发现sec_uid,sec_uid是什么和uid的关系又是什么?相互如何转换?python开发之理论研究试验,如何通过抖音视频下方的用户的UID获得抖音用户的手机号-本系列文章仅供学习研究-禁止用于任何商业用途-仅供学习交流-优雅草卓伊凡
    23
  • 2
    【03】鸿蒙实战应用开发-华为鸿蒙纯血操作系统Harmony OS NEXT-测试hello word效果-虚拟华为手机真机环境调试-为DevEco Studio编译器安装中文插件-测试写一个滑动块效果-介绍诸如ohos.ui等依赖库-全过程实战项目分享-从零开发到上线-优雅草卓伊凡
    27
  • 3
    【01】整体试验思路,如何在有UID的情况下获得用户手机号信息,python开发之理论研究试验,如何通过抖音视频下方的用户的UID获得抖音用户的手机号-本系列文章仅供学习研究-禁止用于任何商业用途-仅供学习交流-优雅草卓伊凡
    126
  • 4
    美团面试:手机扫描PC二维码登录,底层原理和完整流程是什么?
    75
  • 5
    MNN-LLM App:在手机上离线运行大模型,阿里巴巴开源基于 MNN-LLM 框架开发的手机 AI 助手应用
    1261
  • 6
    【06】flutter完成注册页面-密码登录-手机短信验证-找回密码相关页面-并且实现静态跳转打包demo做演示-开发完整的社交APP-前端客户端开发+数据联调|以优雅草商业项目为例做开发-flutter开发-全流程-商业应用级实战开发-优雅草央千澈
    34
  • 7
    ClKLog支持手机端查询统计数据啦!
    41
  • 8
    OmAgent:轻松构建在终端设备上运行的 AI 应用,赋能手机、穿戴设备、摄像头等多种设备
    241
  • 9
    Mobile-Agent:通过视觉感知实现自动化手机操作,支持多应用跨平台
    345
  • 10
    HTML5实现的手机验证抽奖领券效果源码
    67