【回归预测-FNN预测】基于蝙蝠算法优化前馈网络实现数据回归预测附Matlab代码

简介: 【回归预测-FNN预测】基于蝙蝠算法优化前馈网络实现数据回归预测附Matlab代码

1 内容介绍

强大的非线性映射能力使得人工神经网络越来越多地应用于数值预测、工程控制中,但神经网络在学习过程中,不可避免的存在着全局搜索能力差、容易跳入局部最优等不足,因而用神经网络技术预测的数据并不精确.蝙蝠算法(Bat Algorithm,简称BA)是近年来智能计算领域最受关注的研究方向之一,它算法简单、收敛速度快、全局寻优能力好,得到了广泛的应用.本文采用基于蝙蝠算法优化前馈网络实现数据回归预测。


2 仿真代码


clc;

% Generating random correlated data

mu = 50;

sigma = 5;

M = mu + sigma * randn(300, 2);

R = [1, 0.75; 0.75, 1];

L = chol(R);

M = M*L;

x = M(:,1);  % Example Inputs, Replace by your data inputs for your own experiments

y = M(:,2); % Example labels, Replace by your data labels for your own experiments

% Min-max normalization of data

m = max(x); mn = min(x); mm = m-mn;

X = ((x-mn)/mm); Y = ((x-mn)/mm);

% 90%:10% splitting of data for training and testing

sz = (ceil(size(X,1))*0.9);

inputs = (X(1:sz))';

targets = (Y(1:sz))';

XTest = (X(sz+1:end))';

YTest = Y(sz+1:end)';

% number of neurons

n = 4;

tic;

% create a neural network

net = feedforwardnet(n);

% configure the neural network for this dataset

net = configure(net, inputs, targets);

% Denormalizaion and Prediction by FNN

FNN_Pred = ((net(XTest))' * mm) + mn;

%% BAT algorithms

%% Problem Definition

N = 20; % Number of Bats

Max_iter = 30; % Maximum number of iterations

fobj = @(x) NMSE(x, net, inputs, targets);

% Load details of the selected benchmark function

lb = -1; ub = 1;

dim = n^2 + n + n + 1;

[bestfit,x,fmax,BAT_Cg_curve]=newBAT(N,Max_iter,lb,ub,dim,fobj);

net = setwb(net, x');

% Denormalizaion and Prediction by BAT_FNN

BAT_FNN_Pred = ((net(XTest))' * mm) + mn;

YTest = (YTest * mm) + mn;

BAT_FNN_Execution_Time_Seconds = toc

% Plotting prediction results

figure;

plot(YTest,'LineWidth',2, 'Marker','diamond', 'MarkerSize',8);

hold on;

plot(FNN_Pred, 'LineWidth',2, 'Marker','x', 'MarkerSize',8);

plot(BAT_FNN_Pred, 'LineWidth',2, 'Marker','pentagram', 'MarkerSize',8);

title('BAT Optimization based Feed-Forward Neural Network');

xlabel('Time Interval');

ylabel('Values');

legend('Actual Values', 'FNN Predictions', 'BAT-FNN Predictions');

hold off;

3 运行结果

4 参考文献

[1]郝光杰, 俞孟蕻, 苏贞. 基于蝙蝠算法优化模糊神经网络的耙吸挖泥船耙头吸入密度研究[J]. 计算机与数字工程, 2022, 50(2):6.

[2]常青. 基于蝙蝠算法的神经网络优化及其应用[D]. 西安工程大学.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。


相关文章
|
4天前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
|
4天前
|
传感器 算法 物联网
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。
|
8天前
|
机器学习/深度学习 计算机视觉
RT-DETR改进策略【Neck】| ECCV-2024 RCM 矩形自校准模块 优化颈部网络
RT-DETR改进策略【Neck】| ECCV-2024 RCM 矩形自校准模块 优化颈部网络
36 10
RT-DETR改进策略【Neck】| ECCV-2024 RCM 矩形自校准模块 优化颈部网络
|
30天前
|
前端开发 小程序 Java
uniapp-网络数据请求全教程
这篇文档介绍了如何在uni-app项目中使用第三方包发起网络请求
45 3
|
1月前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
1月前
|
传感器 算法
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真
本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。
|
2月前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
2月前
|
负载均衡 网络协议 网络性能优化
动态IP代理技术详解及网络性能优化
动态IP代理技术通过灵活更换IP地址,广泛应用于数据采集、网络安全测试等领域。本文详细解析其工作原理,涵盖HTTP、SOCKS代理及代理池的实现方法,并提供代码示例。同时探讨配置动态代理IP后如何通过智能调度、负载均衡、优化协议选择等方式提升网络性能,确保高效稳定的网络访问。
291 2
|
2月前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
6月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
272 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码

热门文章

最新文章