开源大数据平台 E-MapReduce

首页 标签 开源大数据平台 E-MapReduce
# 开源大数据平台 E-MapReduce #
关注
1607内容
阿里云 JindoFS+OSS 数据上云实战
为了帮助读者能更全面地了解 JindoFS,我们特地编撰了这本电子书。从架构到场景到实操,全方面解读jindoFS。
深度分析:Apache Kafka及其在大数据处理中的应用
Apache Kafka是高吞吐、低延迟的分布式流处理平台,常用于实时数据流、日志收集和事件驱动架构。与RabbitMQ(吞吐量有限)、Pulsar(多租户支持但生态系统小)和Amazon Kinesis(托管服务,成本高)对比,Kafka在高吞吐和持久化上有优势。适用场景包括实时处理、数据集成、日志收集和消息传递。选型需考虑吞吐延迟、持久化、协议支持等因素,使用时注意资源配置、数据管理、监控及安全性。
重磅:阿里云 JindoFS SDK 全面开放使用,OSS 文件各项操作性能得到大幅提升
本文主要介绍如何使用JindoFS SDK来访问OSS对象存储,以及使用它来提升我们操作OSS文件的性能。值得一提的是,此前JindoFS SDK 仅限于E-MapReduce产品内部使用,此次全方位面向整个阿里云OSS用户放开,并提供官方维护和支持技术,欢迎广大用户集成和使用。
阿里云 EMR 基于 Paimon 和 Hudi 构建 Streaming Lakehouse
Apache Paimon 和 Apache Hudi 作为数据湖存储格式,有着高吞吐的写入和低延迟的查询性能,是构建数据湖的常用组件。本文在阿里云EMR上,针对数据实时入湖场景,对 Paimon 和 Hudi 的性能进行比对,并分别以 Paimon 和 Hudi 作为统一存储搭建准实时数仓。
阿里云E-MapReduce Trino专属集群外连引擎及权限控制踩坑实践
本文以云厂商售后技术支持的角度,从客户的需求出发,对于阿里云EMR-Trino集群的选型,外连多引擎的场景、Ldap以及Kerberos鉴权等问题进行了简要的实践和记录,模拟客户已有的业务场景,满足客户需求的同时对过程中的问题点进行解决、记录和分析,包括但不限于Mysql、ODPS、Hive connector的配置,Hive、Delta及Hudi等不同表格式读取的兼容,aws s3、阿里云 oss协议访问异常的解决等。
EMR管控平台全面升级:智能化助力客户实现在离线混部和降本增效
本次介绍EMR开源大数据平台2.0的最新特性,基于微服务架构,提供更稳定高效的服务。平台升级主要体现在智能化和Serverless两个方面。智能化功能利用大语言模型提升运维效率,推出一键诊断和根因分析,缩短问题定位时间。全托管弹性伸缩根据业务动态自动调整资源,提高资源利用率。即将推出的EMR on ACS产品形态支持离在线业务混部,进一步优化资源使用,帮助用户实现降本增效。
阿里云 EMR Serverless Spark:面向 Data+AI 的高性能 Lakehouse 产品
作者:玄橙 - 阿里云 EMR Serverless Spark 产品专家 EMR Serverless Spark 是一款面向 Data+AI 的高性能 Lakehouse 产品。它为企业提供了一站式的数据平台服务,包括任务开发、调试、调度和运维等,极大地简化了数据处理和模型训练的全流程。同时,它100%兼容开源 Spark 生态,能够无缝集成到客户现有的数据平台。使用 EMR Serverless Spark,企业可以更专注于数据处理分析和模型训练调优,提高工作效率。今天我将从业务痛点、产品定位、产品介绍以及客户案例四个部分详细介绍一下 EMR Serverless Spark 这款产品。
【ClickHouse 技术系列】- 在 ClickHouse 中处理实时更新
本文翻译自 Altinity 针对 ClickHouse 的系列技术文章。面向联机分析处理(OLAP)的开源分析引擎 ClickHouse,因其优良的查询性能,PB级的数据规模,简单的架构,被国内外公司广泛采用。本系列技术文章,将详细展开介绍 ClickHouse。
千万级数据秒级响应!碧桂园基于 EMR Serverless StarRocks 升级存算分离架构实践
碧桂园服务通过引入 EMR Serverless StarRocks 存算分离架构,解决了海量数据处理中的资源利用率低、并发能力不足等问题,显著降低了硬件和运维成本。实时查询性能提升8倍,查询出错率减少30倍,集群数据 SLA 达99.99%。此次技术升级不仅优化了用户体验,还结合AI打造了“一看”和“—问”智能场景助力精准决策与风险预测。
免费试用