Caffe

首页 标签 Caffe
# Caffe #
关注
516内容
ResNet 高精度预训练模型在 MMDetection 中的最佳实践
作为最常见的骨干网络,ResNet 在目标检测算法中起到了至关重要的作用。许多目标检测经典算法,如 RetinaNet 、Faster R-CNN 和 Mask R-CNN 等都是以 ResNet 为骨干网络,并在此基础上进行调优。同时,大部分后续改进算法都会以 RetinaNet 、Faster R-CNN 和 Mask R-CNN 为 baseline 进行公平对比。
Windows 上 Caffe开发环境搭建
Caffe是目前非常流行的深度学习框架,使用C++/CUDA编写,使用方便,性能优异,适合线上环境部署。 原生Caffe是在Linux下编译部署的。对于初学者而言,大量依赖包需要花非常大代价才能编译成功,让人望而生畏。况且在Linux下阅读代码是一件非常头疼或蛋疼的事情。 为此,研究在W
深度学习论文阅读图像分类篇(三):VGGNet《Very Deep Convolutional Networks for Large-Scale Image Recognition》
在这项工作中,我们研究了卷积网络深度在大规模的图像识别环境下对准确性的影响。我们的主要贡献是使用非常小的(3×3)卷积滤波器架构对网络深度的增加进行了全面评估,这表明通过将深度推到 16-19 加权层可以实现对现有技术配置的显著改进。这些发现是我们的 ImageNet Challenge 2014 提交论文的基础,我们的团队在定位和分类过程中分别获得了第一名和第二名。我们还表明,我们的表示对于其他数据集泛化的很好,在其它数据集上取得了最好的结果。
免费试用