ResNet 高精度预训练模型在 MMDetection 中的最佳实践
作为最常见的骨干网络,ResNet 在目标检测算法中起到了至关重要的作用。许多目标检测经典算法,如 RetinaNet 、Faster R-CNN 和 Mask R-CNN 等都是以 ResNet 为骨干网络,并在此基础上进行调优。同时,大部分后续改进算法都会以 RetinaNet 、Faster R-CNN 和 Mask R-CNN 为 baseline 进行公平对比。
GoogleNet架构解析
GoogleNet 是 2014 年 ImageNet Challenge 图像识别比赛的冠军。从它的名字我们就 可以看出是来自谷歌的团队完成的。前面我们有介绍,GoogleNet 之所以获得冠军,是因为 它进行模型融合以后得到的效果要比 VGGNet 模型融合之后的效果要好。不过单模型比拼, 它与 VGGNet 的效果相当。
Caffe:使用 classify.py 批量对图片分类
一般使用 Caffe 训练完网络后,会用 `test.bin` 来测试一下网络的精度,然后还能用 `classification.bin` 来用网络对图片进行单张的分类,但是一张一张的分,效率很低,所以我改写了 `classify.py` 文件,使其读取 test.txt 文件批量分类,输出具体哪一张图片分错了。
Windows 上 Caffe开发环境搭建
Caffe是目前非常流行的深度学习框架,使用C++/CUDA编写,使用方便,性能优异,适合线上环境部署。
原生Caffe是在Linux下编译部署的。对于初学者而言,大量依赖包需要花非常大代价才能编译成功,让人望而生畏。况且在Linux下阅读代码是一件非常头疼或蛋疼的事情。
为此,研究在W