Spark

首页 标签 Spark
# Spark #
关注
9105内容
【产品升级】Dataphin V4.5 全新上线:研发效能再提升,资产运营更高效
Dataphin是瓴羊推出的智能数据建设与治理平台,基于阿里巴巴内部实践,提供一站式数据建设与治理能力。V4.5版本研发新增支持GaussDB和TDH 9.3.x作为离线计算引擎、支持MySQL分库分表集成、读取和写入MaxCompute Delta及Hudi湖仓表等;资产运营与消费持续提效,支持批量导入和导出目录与资产信息、对API按照主题进行编目并上架到资产目录、增加资产的血缘、质量评分和元数据变更记录等。
机器学习分布式框架Ray
Ray是UC Berkeley RISELab推出的一个高性能分布式执行框架,它比Spark更具计算优势,部署简单,支持机器学习和深度学习的分布式训练。Ray包括节点(head和worker)、本地调度器、object store、全局调度器(GCS),用于处理各种分布式计算任务。它支持超参数调优(Ray Tune)、梯度下降(Ray SGD)、推理服务(Ray SERVE)等。安装简单,可通过`pip install ray`。使用时,利用`@ray.remote`装饰器将函数转换为分布式任务,通过`.remote`提交并用`ray.get`获取结果。5月更文挑战第15天
手把手教你解决 Hive 的数据倾斜
数据倾斜是 Hive 中影响任务执行效率的现象,表现为某些任务处理的数据量或耗时远超其他任务。根本原因是 Shuffle 后 Key 分布不均,导致部分 Reduce 负载过高。常见场景包括空值聚合、不可拆分大文件、数值膨胀、不同数据类型 Join、Count(distinct) 计算以及表 Join 操作。解决方法包括过滤空值、转换数据类型、调整聚合策略、使用 MapJoin 等。通过合理优化,如设置 `hive.groupby.skewindata` 和 `hive.map.aggr` 参数,可以有效缓解数据倾斜问题。
FeatHub:流批一体的实时特征工程平台
本次分享中,将介绍 FeatHub,一个由阿里云自研并开源的实时特征平台。我们将介绍 FeatHub 的架构设计,已经完成的工作,以及近期的发展计划。
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
|
10月前
|
ClickHouse大规模数据导入优化:批处理与并行处理
【10月更文挑战第27天】在数据驱动的时代,高效的数据导入和处理能力是企业竞争力的重要组成部分。作为一位数据工程师,我在实际工作中经常遇到需要将大量数据导入ClickHouse的需求。ClickHouse是一款高性能的列式数据库系统,非常适合进行大规模数据的分析和查询。然而,如何优化ClickHouse的数据导入过程,提高导入的效率和速度,是我们面临的一个重要挑战。本文将从我个人的角度出发,详细介绍如何通过批处理、并行处理和数据预处理等技术优化ClickHouse的数据导入过程。
免费试用