深度写作:深入源码理解MQ长轮询优化机制
【11月更文挑战第22天】在分布式系统中,消息队列(Message Queue, MQ)扮演着至关重要的角色。MQ不仅实现了应用间的解耦,还提供了异步消息处理、流量削峰等功能。而在MQ的众多特性中,长轮询(Long Polling)机制因其能有效提升消息处理的实时性和效率,备受关注。
被问到MQ消息已丢失,该如何处理?
在分布式系统中,消息中间件(如RabbitMQ、Kafka等)用于解耦生产者和消费者,确保数据传输的可靠性和顺序性。尽管有多种措施防止消息丢失,如消息持久化、手动确认机制和重试机制,但消息丢失仍可能发生。本文探讨了四种常见丢失场景及补救措施:1. 生产者发送消息失败;2. 消息在传输过程中丢失;3. 消息中间件内部丢失;4. 消费者未处理完消息前丢失。针对每种场景,提出了相应的解决方案,如消息重发、本地存储、日志记录、高可用配置、死信队列等,以确保系统的可靠性和稳定性。
【中间件1】在Windows下搭建RocketMQ
目录
目录
一 准备工作
1 RocketMQ部署架构1
2 环境配置
二 安装RocketMQ
1 下载编译好的RocketMQ
2 解压缩并进入bin目录
3 启动name server
4 启动broker
5 MQ安装完毕
三 验证MQ是否安...
RocketMQ如何保证消息的可靠性?
消息的发送方式有哪几种?存储消息的可靠性面临哪些挑战?消费消息的确认机制是怎样的?本文通过分析消息流转的整个过程,从消息发送、消息存储和消息消费三个阶段介绍RocketMQ是如何保证消息的可靠性的。
Canal采集MySQL Binlog——数据同步方案
针对业务库MySQL Binlog日志数据进行数据同步,从MySQL到Kafka,最终实现实时(准实时)数据采集。其中Canal可以使用且推荐使用MaxWell,此篇文档只是介绍如何通过Canal打通上下游数据点。