深度学习环境搭建笔记(一):detectron2安装过程
这篇博客文章详细介绍了在Windows环境下,使用CUDA 10.2配置深度学习环境,并安装detectron2库的步骤,包括安装Python、pycocotools、Torch和Torchvision、fvcore,以及对Detectron2和PyTorch代码的修改。
4G显存部署Flux,2分钟Wan2.1-14B视频生成,DiffSynth-Engine引擎开源!
魔搭社区的开源项目 DiffSynth-Studio 自推出以来,凭借其前沿的技术探索和卓越的创新能力,持续受到开源社区的高度关注与广泛好评。截至目前,该项目已在 GitHub 上斩获超过 8,000 颗星,成为备受瞩目的开源项目之一。作为以技术探索为核心理念的实践平台,DiffSynth-Studio 基于扩散模型(Diffusion Model),在图像生成和视频生成领域孵化出了一系列富有创意且实用的技术成果,其中包括 ExVideo、ArtAug、EliGen 等代表性模块。
高效使用 PyODPS 最佳实践
以更清晰的认知 PyODPS,DataWorks PyODPS 节点以及 PyODPS 何时在计算集群运行,开发者如何利用 PyODPS 更高效地进行数据开发。
【Pytorch】查看GPU是否可用
本文提供了使用PyTorch检查GPU是否可用的方法,包括查看PyTorch版本、编译时使用的CUDA版本以及当前CUDA是否可用于PyTorch。