GPU通信互联技术:GPUDirect、NVLink与RDMA
在高性能计算和深度学习领域,GPU已成为关键工具。然而,随着模型复杂度和数据量的增加,单个GPU难以满足需求,多GPU甚至多服务器协同工作成为常态。本文探讨了三种主要的GPU通信互联技术:GPUDirect、NVLink和RDMA。GPUDirect通过绕过CPU实现GPU与设备直接通信;NVLink提供高速点对点连接和支持内存共享;RDMA则在网络层面实现直接内存访问,降低延迟。这些技术各有优势,适用于不同场景,为AI和高性能计算提供了强大支持。
英伟达新一代GPU架构(50系列显卡)PyTorch兼容性解决方案
本文记录了在RTX 5070 Ti上运行PyTorch时遇到的CUDA兼容性问题,分析其根源为预编译二进制文件不支持sm_120架构,并提出解决方案:使用PyTorch Nightly版本、更新CUDA工具包至12.8。通过清理环境并安装支持新架构的组件,成功解决兼容性问题。文章总结了深度学习环境中硬件与框架兼容性的关键策略,强调Nightly构建版本和环境一致性的重要性,为开发者提供参考。
ONNX 优化技巧:加速模型推理
【8月更文第27天】ONNX (Open Neural Network Exchange) 是一个开放格式,用于表示机器学习模型,使模型能够在多种框架之间进行转换。ONNX Runtime (ORT) 是一个高效的推理引擎,旨在加速模型的部署。本文将介绍如何使用 ONNX Runtime 和相关工具来优化模型的推理速度和资源消耗。
多智能体系统设计:5种编排模式解决复杂AI任务
本文探讨了多AI智能体协作中的关键问题——编排。文章指出,随着系统从单体模型向多智能体架构演进,如何设计智能体之间的通信协议、工作流程和决策机制,成为实现高效协作的核心。文章详细分析了五种主流的智能体编排模式:顺序编排、MapReduce、共识模式、分层编排和制作者-检查者模式,并分别介绍了它们的应用场景、优势与挑战。最后指出,尽管大模型如GPT-5提升了单体能力,但在复杂任务中,合理的智能体编排仍不可或缺。选择适合的编排方式,有助于在系统复杂度与实际效果之间取得平衡。