实时计算引擎 Flink:从入门到深入理解
本篇详细介绍了Apache Flink实时计算引擎的基本概念和核心功能。从入门到深入,逐步介绍了Flink的数据源与接收、数据转换与计算、窗口操作以及状态管理等方面的内容,并附带代码示例进行实际操作演示。通过阅读本文,读者可以建立起对Flink实时计算引擎的全面理解,为实际项目中的实时数据处理提供了有力的指导和实践基础。
rocket mq 查看消费进度,消息堆积,清除堆积数据命令
该内容是关于RocketMQ的消费进度管理和堆积数据处理的指导。首先,需进入RocketMQ的bin目录,然后使用`mqadmin consumerProgress`命令查看消费者或生产者的消费进度。`broker offset`和`consumer offset`的差值表示未消费消息。通过`resetOffsetByTime`命令可重置消费位点来清除堆积数据,未消费消息默认3天后会被丢弃。此外,`CONSUME_FROM WHERE`枚举类定义了消费起点选项,包括从最后、最开始或指定时间点消费。
Kafka与Flink:构建高性能实时数据处理系统的实践指南
Apache Kafka 和 Apache Flink 的结合为构建高性能的实时数据处理系统提供了坚实的基础。通过合理的架构设计和参数配置,可以实现低延迟、高吞吐量的数据流处理。无论是在电商、金融、物流还是其他行业,这种组合都能为企业带来巨大的价值。
PAI-TurboX:面向自动驾驶的训练推理加速框架
PAI-TurboX 为自动驾驶场景中的复杂数据预处理、离线大规模模型训练和实时智能驾驶推理,提供了全方位的加速解决方案。PAI-Notebook Gallery 提供PAI-TurboX 一键启动的 Notebook 最佳实践