构建一个基于通义千问的智能客服系统
              
公司开发一个智能客服系统,帮助用户快速找到他们需要的商品信息、解决问题,并提供个性化的购物建议。系统需要能够处理大量的用户提问,并以自然语言的形式给出准确的回答。
              
             
            
            
              
              命名实体识别(Named Entity Recognition, NER)
              命名实体识别(NER)是自然语言处理的重要任务,旨在从文本中识别并分类特定实体,如人名、地点、组织等。通过BIO等标注模式,利用HMM、CRF及深度学习模型如RNN、LSTM、Transformer等进行实体识别。预训练模型如BERT显著提升了NER的性能。NER广泛应用于新闻分析、生物医学等领域,是信息提取、知识图谱构建等任务的基础。
              
             
            
            
              
              一文揭秘!自底向上构建知识图谱全过程
              知识图谱的构建技术主要有自顶向下和自底向上两种。其中自顶向下构建是指借助百科类网站等结构化数据源,从高质量数据中提取本体和模式信息,加入到知识库里。而自底向上构建,则是借助一定的技术手段,从公开采集的数据中提取出资源模式,选择其中置信度较高的信息,加入到知识库中。