初识LightRAG:轻量级知识图谱框架指南
              LightRAG创新融合知识图谱与向量检索,显著提升检索精度和可解释性。该框架轻量高效,支持多模态数据处理,提供简洁API便于快速集成。通过结构化关系补充分散语义,有效解决传统RAG系统的关系缺失与语义模糊问题。
              
             
            
            
              
              【阿里云WSDM2021论文解读】时序转化为图构建高效可解释的时序分析模型
              
本文简要介绍我们刚刚被WSDM2021会议录用并即将发表的论文"Time-Series Event Prediction with Evolutionary State Graph"(论文地址),在文中我们提出了一种将时序转化为图进行表示建模的方法。同时我们把所实现的方法落地为阿里云·SLS的智能巡检服务,可以应用于大规模的时间序列异常检测与分析,辅助运维,运营,研发等诸多场景。
              
             
            
            
            
            
              
              RAG中用户问答的答案是大模型产生的吗?
              RAG中,答案是大模型产生的,还是向量检索产生的?RAG是一种结合了大模型生成和向量检索的自然语言处理技术。它通过大模型生成答案的主体部分,并利用向量检索从知识库中获取相关的参考文本片段。这种结合使得RAG能够生成更丰富、更准确的答案。然而,随着技术的发展和应用场景的不断扩大,我们还需要进一步研究和解决RAG面临的一些挑战和问题。
              
             
            
              
              【类脑计算】突触可塑性模型之Hebbian学习规则和STDP
              本文介绍了突触可塑性中的Hebbian学习规则和STDP(Spike-Timing Dependent Plasticity),两种基于神经元活动调节突触强度的机制,其中Hebbian规则强调同时活动的神经元间的连接增强,而STDP则考虑了脉冲时间差异对突触强度的调节作用。
              
             
            
              
              关于LLM-as-a-judge范式,终于有综述讲明白了
              《From Generation to Judgment: Opportunities and Challenges of LLM-as-a-judge》探讨了大型语言模型(LLM)在评估和判断任务中的应用。传统方法存在不足,而LLM凭借强大的语言理解和生成能力,展现了广阔的应用前景。论文从输入输出角度定义LLM-as-a-judge,提出三维度分类体系,并汇编评估基准,指出关键挑战如偏见、可解释性和对抗性攻击,展望未来改进方向,强调其潜力与价值。论文链接:https://arxiv.org/abs/2411.16594