【阿里云WSDM2021论文解读】时序转化为图构建高效可解释的时序分析模型
              
本文简要介绍我们刚刚被WSDM2021会议录用并即将发表的论文"Time-Series Event Prediction with Evolutionary State Graph"(论文地址),在文中我们提出了一种将时序转化为图进行表示建模的方法。同时我们把所实现的方法落地为阿里云·SLS的智能巡检服务,可以应用于大规模的时间序列异常检测与分析,辅助运维,运营,研发等诸多场景。
              
             
            
            
            
            
              
              RAG中用户问答的答案是大模型产生的吗?
              RAG中,答案是大模型产生的,还是向量检索产生的?RAG是一种结合了大模型生成和向量检索的自然语言处理技术。它通过大模型生成答案的主体部分,并利用向量检索从知识库中获取相关的参考文本片段。这种结合使得RAG能够生成更丰富、更准确的答案。然而,随着技术的发展和应用场景的不断扩大,我们还需要进一步研究和解决RAG面临的一些挑战和问题。
              
             
            
              
              【类脑计算】突触可塑性模型之Hebbian学习规则和STDP
              本文介绍了突触可塑性中的Hebbian学习规则和STDP(Spike-Timing Dependent Plasticity),两种基于神经元活动调节突触强度的机制,其中Hebbian规则强调同时活动的神经元间的连接增强,而STDP则考虑了脉冲时间差异对突触强度的调节作用。
              
             
            
              
              关于LLM-as-a-judge范式,终于有综述讲明白了
              《From Generation to Judgment: Opportunities and Challenges of LLM-as-a-judge》探讨了大型语言模型(LLM)在评估和判断任务中的应用。传统方法存在不足,而LLM凭借强大的语言理解和生成能力,展现了广阔的应用前景。论文从输入输出角度定义LLM-as-a-judge,提出三维度分类体系,并汇编评估基准,指出关键挑战如偏见、可解释性和对抗性攻击,展望未来改进方向,强调其潜力与价值。论文链接:https://arxiv.org/abs/2411.16594
              
             
            
              
              基于 PAI-ArtLab 使用 ComfyUI 搭建对话式 AI 女友
              本实验介绍了一款名为“AI虚拟女友——胡桃”的应用,通过ComfyUI后端与WebUI展示效果,结合LLM节点和知识图谱工具包(KG),实现角色人设稳定及长期记忆功能。用户可通过输入信息与AI互动,并自定义人设知识图谱和角色LoRA。操作步骤包括登录PAI ArtLab平台、加载工作流文件、配置角色参数并与AI对话。此外,还提供了Graph RAG技术详解及常见问题解答,帮助用户更好地理解和使用该系统。
              
             
            
            
              
              从属性,三元组到图:知识和语义融合进展研究
              近十年来,语义表征学习获得了巨大的成功,从早期的word2vec和共现统计方法,到近期以Bert为代表的上下文表征预训练模型,  通过大规模非监督语料训练并斩落了多个下游NLP任务, 证明了AE模型强大的威力。 
而知识表示学习(KRL),又称之为knowledge Embedding(KE), 将实体和关系映射到低维的连续向量空间, 早期方法主要以三元组, 近些年来以subgraph或path