初识LightRAG:轻量级知识图谱框架指南
LightRAG创新融合知识图谱与向量检索,显著提升检索精度和可解释性。该框架轻量高效,支持多模态数据处理,提供简洁API便于快速集成。通过结构化关系补充分散语义,有效解决传统RAG系统的关系缺失与语义模糊问题。
职播间 | 从0到1构建聊天机器人
本次分享将会系统性阐述聊天机器人的技术挑战,讨论聊天机器人理论的最新进展,介绍如何从零构建一款可用的聊天机器人,以及打造聊天机器人落地产品中需要注意的技术细节。
智能语音助手的技术原理与实现
【7月更文挑战第31天】智能语音助手的技术原理与实现涉及语音识别、自然语言处理、知识图谱以及多模态交互等多个方面。随着人工智能技术的不断发展和创新,智能语音助手将更加智能化、高效化和普适化,为我们的生活带来更加便捷和丰富的体验。
GEO的关键要素
生成式引擎优化(GEO)是AI搜索时代内容优化的核心策略。本文从技术架构、内容工程、算法适配与生态治理四大维度,系统解析GEO的关键要素,涵盖结构化数据、知识图谱、多模态适配等20+技术点,结合医疗、金融、工业等实证案例,揭示AI时代内容优化的底层逻辑,助力企业构建机器可理解、高推荐率的内容体系,抢占AI搜索战略高地。
RAG 2.0 深入解读
本文从RAG 2.0 面临的主要挑战和部分关键技术来展开叙事,还包括了RAG的技术升级和关键技术等。