GPU云服务器

首页 标签 GPU云服务器
# GPU云服务器 #
关注
7911内容
2025年阿里云GPU服务器的租赁价格与选型指南
随着AI、深度学习等领域的发展,GPU服务器成为企业及科研机构的核心算力选择。阿里云提供多种GPU实例类型(如NVIDIA V100、A100等),涵盖计算型、共享型和弹性裸金属等,满足不同场景需求。本文详解2025年阿里云GPU服务器的核心配置、价格策略及适用场景,帮助用户优化选型与成本控制,实现高效智能计算。
AxBench:斯坦福大学推出评估语言模型控制方法的基准测试框架
AxBench 是由斯坦福大学推出,用于评估语言模型可解释性方法的基准测试框架,支持概念检测和模型转向任务,帮助研究者系统地比较不同控制技术的有效性。
Magic 1-For-1:北大联合英伟达推出的高质量视频生成量化模型,支持在消费级GPU上快速生成
北京大学、Hedra Inc. 和 Nvidia 联合推出的 Magic 1-For-1 模型,优化内存消耗和推理延迟,快速生成高质量视频片段。
本地部署DeepSeek模型
要在本地部署DeepSeek模型,需准备Linux(推荐Ubuntu 20.04+)或兼容的Windows/macOS环境,配备NVIDIA GPU(建议RTX 3060+)。安装Python 3.8+、PyTorch/TensorFlow等依赖,并通过官方渠道下载模型文件。配置模型后,编写推理脚本进行测试,可选使用FastAPI服务化部署或Docker容器化。注意资源监控和许可协议。
漫谈DeepSeek及其背后的核心技术
本文深入探讨了DeepSeek大模型的核心技术,从公司背景、模型能力、训推成本到核心技术细节进行了全面分析。
告别服务器繁忙,云上部署DeepSeek
本文以 DeepSeek-R1-Distill-Qwen-32B-FP8 为例,向您介绍如何在GPU实例上使用容器来部署量化的 DeepSeek-R1 蒸馏模型。
方案测评 | 零基础5分钟拥有自己的DeepSeek-R1 满血版
阿里云推出的DeepSeek解决方案,帮助用户轻松拥有满血版DeepSeek-R1。无需编程知识,最快10分钟完成部署,支持API调用、PAI平台、函数计算和GPU服务器等多种方式。方案具备低门槛、高弹性、成本优化等优势,尤其适合零基础用户。解决方案链接:https://www.aliyun.com/solution/tech-solution/deepseek-r1-for-platforms?utm_content=g_1000401616
DeepSeek模型部署全过程实践,轻松上手就在阿里云
随着人工智能技术的不断发展,越来越多的企业和个人开始探索如何利用深度学习模型来提升业务效率和用户体验。阿里云推出的【零门槛、轻松部署您的专属 DeepSeek 模型】解决方案为用户提供了多种便捷的部署方式,包括**基于百炼 API 调用满血版、基于人工智能平台 PAl 部署、基于函数计算部署以及基于 GPU 云服务器部署**。本文将从多个维度对这些部署方式进行详细评测,并分享个人的实际体验和观点。
免费试用