暂时未有相关云产品技术能力~
暂无个人介绍
本文介绍了YOLOv10的性能优化,通过融合Ghost模块和C2f结构,实现了网络性能的均衡。GhostNet通过GhostModule和GhostBottleNeck减少参数量,适用于资源有限的场景。YOLOv10-C2f_Ghost在减少参数和计算量的同时,保持了与原始网络相当或更好的性能。文章还提供了详细的代码修改步骤和可能遇到的问题解决方案。
基于YOLOv10的无人机巡航小目标实时检测系统,通过7444张无人机场景训练图片,训练出能检测9类目标的模型,并开发了带GUI界面的系统,支持图片、视频和摄像头实时检测,具备背景和标题更换、模型选择、检测信息展示等功能。
本文介绍了如何使用YOLOv7进行目标检测,包括环境搭建、数据集准备、模型训练、验证、测试以及常见错误的解决方法。YOLOv7以其高效性能和准确率在目标检测领域受到关注,适用于自动驾驶、安防监控等场景。文中提供了源码和论文链接,以及详细的步骤说明,适合深度学习实践者参考。
本文提供了一份详细的PySide6与VSCode联动的操作指南,包括安装配置VSCode、安装必要的扩展、配置扩展以及编辑和运行PySide6项目。文中还提到了相关工具如uic.exe、rcc.exe和designer.exe的用途,并提供了进一步学习的资源。
本文介绍了如何使用Pyside6实现系统页面跳转,包括登录界面跳转到注册界面的代码实现。关键步骤包括创建空窗口、编写跳转逻辑,并提供了完整的登录和注册窗口代码。此外,还涉及了国际化、主题色设置和窗口特效等高级功能。
本文介绍了将BiFPN网络应用于YOLOv8以增强网络性能的方法。通过双向跨尺度连接和加权特征融合,BiFPN能有效捕获多尺度特征,提高目标检测效果。文章还提供了详细的代码修改步骤,包括修改配置文件、创建模块文件、修改训练代码等,以实现YOLOv8与BiFPN的融合。
本文介绍了如何将ATSS标签分配策略融合到YOLOv8中,以提升目标检测网络的性能。通过修改损失文件、创建ATSS模块文件和调整训练代码,实现了网络的快速涨点。ATSS通过自动选择正负样本,避免了人工设定阈值,提高了模型效率。文章还提供了遇到问题的解决方案,如模块载入和环境配置问题。
基于YOLOv8的工业安全帽实时检测系统,通过7581张图片训练,实现工作场所安全帽佩戴检测,降低工伤事故。系统支持图片、视频和摄像头实时检测,具备GUI界面,易于操作。使用Python和Pyside6开发,提供模型训练、评估和推理功能。
本文介绍了使用Nuitka、PyInstaller和auto-py-to-exe三种工具将Python的PyQt/PySide6应用打包成exe文件的方法。提供了详细的安装步骤、打包命令和参数说明,适合新手学习和实践。
基于YOLOv8的火焰烟雾实时检测系统,使用6744张图片训练有效模型,开发了带GUI界面的系统,支持图片、视频和摄像头实时检测,具备模型权重导入、检测置信度调节等功能,并提供项目完整代码和数据集。
本文介绍了Docker的基本概念、优点以及常用命令。Docker是一个开源的应用容器引擎,它通过容器打包应用程序及其依赖项,实现快速部署和迁移。主要优点包括轻量级、可移植性、易于管理、安全性和开源性。文章还区分了镜像和容器的概念,并提供了构建镜像、查看容器、运行容器、停止和删除容器等常用Docker命令的示例。
这篇文章介绍了如何使用YOLOX完成图像目标检测任务的完整流程,包括数据准备、模型训练、验证和测试。
这篇文章详细介绍了如何使用YOLOv8进行目标检测任务,包括环境搭建、数据准备、模型训练、验证测试以及模型转换等完整流程。
这篇文章介绍了如何使用PaddleClas框架完成多标签分类任务,包括数据准备、环境搭建、模型训练、预测、评估等完整流程。
本文详细介绍了使用YOLOv5-7.0版本进行目标检测的完整流程,包括算法介绍、环境搭建、数据集准备、模型训练、验证、测试以及评价指标。YOLOv5以其高精度、快速度和模型小尺寸在计算机视觉领域受到广泛应用。
本文介绍了DeepLab V3在语义分割中的应用,包括数据集准备、模型训练、测试和评估,提供了代码和资源链接。
本文详细介绍了使用YOLOv5-Seg模型进行图像分割的完整流程,包括图像分割的基础知识、YOLOv5-Seg模型的特点、环境搭建、数据集准备、模型训练、验证、测试以及评价指标。通过实例代码,指导读者从自定义数据集开始,直至模型的测试验证,适合深度学习领域的研究者和开发者参考。
本文是关于如何搭建深度学习环境,特别是使用mmdetection进行CPU安装和训练的详细指南。包括安装Anaconda、创建虚拟环境、安装PyTorch、mmcv-full和mmdetection,以及测试环境和训练目标检测模型的步骤。还提供了数据集准备、检查和网络训练的详细说明。
本文介绍了labelImg和labelme两款图像标注工具的安装、使用、数据转换和验证方法,适用于目标检测和图像分割任务,支持YOLO等数据集格式。
这篇文章介绍了SMOTE算法,这是一种通过合成新样本来处理数据不均衡问题的技术,旨在提高模型对少数类别的识别能力。
本文介绍了网格搜索(Grid Search)在机器学习中用于优化模型超参数的方法,包括定义超参数范围、创建参数网格、选择评估指标、构建模型和交叉验证策略、执行网格搜索、选择最佳超参数组合,并使用这些参数重新训练模型。文中还讨论了GridSearchCV的参数和不同机器学习问题适用的评分指标。最后提供了使用决策树分类器进行网格搜索的Python代码示例。
本文介绍了如何使用COCO评估器通过Detectron2库对目标检测模型进行性能评估,生成coco_instances_results.json文件,并利用pycocotools解析该文件以计算AP、AR、MR和DR等关键指标。
这篇博客文章详细介绍了在Windows环境下,使用CUDA 10.2配置深度学习环境,并安装detectron2库的步骤,包括安装Python、pycocotools、Torch和Torchvision、fvcore,以及对Detectron2和PyTorch代码的修改。
这篇博客介绍了如何使用Nvidia SDK Manager烧录Jetson Nano。首先,需要在Ubuntu系统中安装VMware虚拟机和Nvidia SDK Manager。然后,通过连接Jetson Nano并进行一系列设置,包括FC_REC脚接GND,连接HDMI、鼠标键盘和电源线。在Ubuntu上通过lsusb确认设备连接后,使用SDK Manager进行烧录,选择Manual Setup-Jetson Nano,设置用户名和密码,然后点击flash完成安装。完成后,可以断开连接并启动Jetson Nano,进入Ubuntu安装界面。
本文介绍了Mosaic数据增强技术,通过将四张图片拼接成一张新图,极大丰富了目标检测的背景信息。文章提供了完整的Python代码,涵盖了如何处理检测框并调整其位置,以适应拼接后的图像。Mosaic技术不仅提高了学习效率,还在标准化BN计算时同时考虑了四张图片的数据,从而提升了模型的泛化能力。
本文介绍了如何使用Pytest和Allure生成自动化测试报告。通过安装allure-pytest和配置环境,可以生成包含用例描述、步骤、等级等详细信息的美观报告。文章还提供了代码示例和运行指南,以及重构项目时的注意事项。
本文是关于自动化测试项目实战笔记,主要介绍了如何测试用户注册功能,包括验证码错误、注册成功以及弹框处理的测试步骤和代码实现。
这篇博客介绍了如何使用PaddleSeg和Transformer模型SegFormer B3对航空遥感图像进行语义分割,包括项目背景、数据集处理、训练步骤和代码实现。
这篇文章讨论了CUDA初始化时出现的未知错误及其解决方案,包括重启系统和安装nvidia-modprobe。
在Linux系统中,使用Tkinter库时可能会遇到中文显示乱码的问题,这通常是由于字体支持问题导致的,可以通过更换支持中文的字体来解决。
这篇文章介绍了图像腐蚀和膨胀的原理、作用以及使用OpenCV实现这些操作的代码示例,并深入解析了开运算和闭运算的概念及其在图像形态学处理中的应用。
本文介绍了如何在OpenCV中通过使用cisco开源的openh264库来解决不支持H.264编码的问题,并提供了完整的代码示例。
本文介绍了如何在Ubuntu系统下使用Anaconda和Jupyter Notebook指定并切换不同的虚拟环境。
这篇文章介绍了如何通过SSH命令行和VNC图形界面远程登录和控制NVIDIA Jetson Nano设备。
这篇文章是关于如何测试YOLOv5中不同模块(如SPP和SPPF)的推理速度,并通过代码示例展示了如何进行性能分析。
这篇文章详细介绍了多种用于目标检测任务中的边界框回归损失函数,包括IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU和WIOU,并提供了它们的Pytorch实现代码。
本文介绍了在Ubuntu系统中切换Anaconda和系统自带Python的方法。方法1涉及编辑~/.bashrc和/etc/profile文件,更新Anaconda的路径。方法2提供了详细的步骤指导,帮助用户在Anaconda和系统自带Python之间进行切换。
本文是关于如何在Jetson设备上使用CSI摄像头实现RTSP流传输的详细教程,包括安装依赖、编译gst-rtsp-server、测试、源代码介绍以及如何动态获取多路流的RTSP服务器。
这篇文章是关于MySQL数据库命令行操作的总结,包括登录、退出、查看时间与版本、数据库和数据表的基本操作(如创建、删除、查看)、数据的增删改查等。它还涉及了如何通过SQL语句进行条件查询、模糊查询、范围查询和限制查询,以及如何进行表结构的修改。这些内容对于初学者来说非常实用,是学习MySQL数据库管理的基础。
本文是关于Ubuntu系统中使用ffmpeg 3.2.16源码编译OpenCV 3.4.0的安装笔记,包括安装ffmpeg、编译OpenCV、卸载OpenCV以及常见报错处理。
本文介绍了在Ubuntu 18.04系统上编译安装OpenCV 3.4.0及其扩展包opencv_contrib 3.4.0的详细步骤,包括下载源码、安装依赖、配置CMake和编译安装,以及常见问题的解决方法。
本文介绍了PyAV库,它是FFmpeg的Python绑定,提供了底层库的全部功能和控制。文章详细讲解了PyAV的安装过程,包括在Windows、Linux和ARM平台上的安装步骤,以及安装中可能遇到的错误和解决方法。此外,还解释了时间戳的概念,包括RTP、NTP、PTS和DTS,并提供了Python代码示例,展示如何获取RTSP流中的各种时间戳。最后,文章还提供了一些附录,包括Python通过NTP同步获取时间的方法和使用PyAV访问网络视频流的技巧。
这篇文章详细介绍了使用YOLOv4-Tiny进行目标检测的实战步骤,包括下载源码和权重文件、配置编译环境、进行简单测试、训练VOC数据集、生成训练文件、准备训练、开始训练以及多GPU训练的步骤。文章还提供了相应的代码示例,帮助读者理解和实践YOLOv4-Tiny模型的训练和测试过程。
本文探讨了深度可分离卷积和空间可分离卷积,通过代码示例展示了它们在降低计算复杂性和提高效率方面的优势。
本文介绍了使用YOLOv4-Tiny进行目标检测的完整流程,包括模型介绍、代码下载、数据集处理、网络训练、预测和评估。
这篇文章介绍了如何使用PyTorch框架,结合CIFAR-10数据集,通过定义神经网络、损失函数和优化器,进行模型的训练和测试。
本文汇总了Python编程中常见的错误及其解决办法,包括导入错误、类型错误、运行时错误等,并提供了详细的解决方案。
这篇文章详细介绍了特征金字塔网络(FPN)及其变体PAN和BiFPN在深度学习目标检测中的应用,包括它们的结构、特点和代码实现。
本文提供了Anaconda的详细安装教程,包括下载安装包、安装过程以及基本的Anaconda操作,如创建和管理Python虚拟环境。
关于如何使用TensorBoard进行数据可视化的教程,包括TensorBoard的安装、配置环境变量、将数据写入TensorBoard、启动TensorBoard以及如何通过网页查看日志文件。