YOLOv10优改系列一:YOLOv10融合C2f_Ghost网络,让YoloV10实现性能的均衡

简介: 本文介绍了YOLOv10的性能优化,通过融合Ghost模块和C2f结构,实现了网络性能的均衡。GhostNet通过GhostModule和GhostBottleNeck减少参数量,适用于资源有限的场景。YOLOv10-C2f_Ghost在减少参数和计算量的同时,保持了与原始网络相当或更好的性能。文章还提供了详细的代码修改步骤和可能遇到的问题解决方案。

一、Ghost Net介绍

🌳论文地址点击
🌳源码地址点击
🌳论文摘要:GhostNet是一种轻量级的深度学习模型,通过GhostModule和GhostBottleNeck实现高效特征提取。GhostModule通过1x1卷积和深度可分离卷积生成更多特征图,减少参数量。GhostBottleNeck则是GhostModule的瓶颈结构,用于构建网络深度。GhostNet适用于资源有限的场景,如移动设备上的图像分类任务。
🌳主要思想:(1)对卷积进行改进(2)加残差连接
🌳解决方法

  1. Ghost模块通过减少卷积核的数量来降低参数数量和计算量。例如,如果输出特征图的数量是原始卷积的两倍,那么Ghost模块会先通过普通卷积生成一半数量的特征图,然后通过深度可分离卷积生成另一半特征图,这样总体的参数数量和计算量就减少了。尽管GhostNet减少了参数和计算量,但它仍然能够提供与原始网络相当或更好的性能

🌳工作原理
   GhostNet的核心是Ghost模块,它通过廉价操作生成更多的特征图。在标准的卷积操作中,输出特征图是通过输入特征图与卷积核的卷积得到的。Ghost模块首先使用普通卷积生成一部分特征图(称为intrinsic特征图),然后通过深度可分离卷积(depthwise convolution)等廉价操作生成额外的特征图(称为ghost特征图)。最后,将这两部分特征图拼接起来,形成最终的输出特征图。

   在后续的版本GhostNetV2中,引入了一种新的注意力机制,称为DFC(Decoupled Fully Connected)注意力,它通过全连接层捕捉长距离像素之间的依赖关系,进一步提高了网络的性能。

🌳网络结构和相关图
在这里插入图片描述
可以很明显地看到很多特征图存在着非常类似的特征,只不过是颜色的深浅的区别,为了减少计算的复杂度,很自然地就会去想是不是可以去除这些过于类似的冗余特征图。然而,作者在文中指出冗余的特征图对于模型的精度还是起着很重要的作用的,因此不能简单地减少特征图的生成数量来实现高效计算。
在这里插入图片描述
GhostModule,将普通的卷积分为了两步,先生成主要的特征图,再由主要的特征图做简单的卷积变换生成幻象特征图,这样可以大大减少计算的开销。

在这里插入图片描述

Ghost Bottlenecks是由Ghost Module组成的瓶颈结构,其实本质上就是用Ghost Module,来代替瓶颈结构里面的普通卷积。

Ghost Bottlenecks有两个种类(输入进来的步长为1选第一种,输入进来的步长为2选第二种),如下图所示。先来看第一个Ghost Bottleneck,可以分为两个部分,分别是主干部分和残差边部分。在主干部分,使用两个ghost模块对输入的特征层进行特征提取;在残差边部分,什么都不处理,直接将输入和输出进行逐元素求和。这样,第一个瓶颈结构就构建完成了,由于它的步长为1,所以不会对输入进来的特征图进行高和宽的压缩,它的功能是加深网络的深度。

当我们需要对特征层的宽高进行压缩的时候,需要设置第二个Ghost Bottlenecks,即在Bottlenecks里添加一些卷积层。在主干部分里,首先用ghost module进行特征提取,提取完成后使用一个步长为2的深度可分离卷积对输入特征层进行高和宽的压缩,然后再用一个ghost模块进行特征提取。在残差边部分,也会添加上一个步长为2的深度可分离卷积和1x1的普通卷积,然后将输入和输出进行相加。第二个瓶颈结构的步长为2,它的功能就是改变输入特征层的宽高。

二、C2f和C2f_Ghost复杂度对比

YOLOv10默认使用C2f模块
YOLOv10-C2f_Ghost:针对主干网络部分的C2f替换成C2f_Ghost模块

YOLOv10s summary: 402 layers, 8074092 parameters, 8074076 gradients, 24.8 GFLOPs
YOLOv10s-C2f_Ghost summary: 468 layers, 7346756 parameters, 7346740 gradients, 20.3 GFLOPs
在这里插入图片描述

三、核心代码修改

3.1 修改yaml配置文件

复制一份ultralytics\cfg\models\v8\yolov10.yaml下的yolov8.yaml文件到v8根目录文件my_code/yolov10/my_files/yamls
在YOLOv10根目录创建一个my_files/yamls的文件夹,将yolov10/ultralytics/cfg/models/v10/yolov10s.yaml复制一份到yolov10/my_code/yolov10/my_files/yamls/yolov10s.yaml,然后yolov10/my_code/yolov10/my_files/yamls/yolov10s.yaml复制一份为yolov10/my_code/yolov10/my_files/yamls/yolov10s-C2f_Ghost.yaml。
在这里插入图片描述
下面是yolov10s-C2f_Ghost.yaml配置文件

配置文件,可通过关注公众号【AI应用视界】(或者扫描最下面的二维码关注)
    输入关键字 yolov10+c2f_ghost自动获取

3.2 创建模块文件

ultralytics\nn\modules,在此路径下新建专门存放我们新添加的模块文件夹my_file(好区分),然后在此文件夹下新建ghost.py,添加以下内容:

核心模块文件,可通过关注公众号【AI应用视界】(或者扫描最下面的二维码关注)
    输入关键字 yolov10+c2f_ghost自动获取

3.3 修改task.py文件

在ultralytics\nn文件夹中找到tasks.py文件,并对以下内容(#todo)进行添加。

  1. 第一步,导入C2f_Ghost
  2. 第二步,在parse_model函数中加入下面虚线中的代码
###############################################第一步
from ultralytics.nn.modules import C2f_Ghost # 导入C2f_Ghost 模块
#################################################
###############################################第二步
        elif m is AIFI:
            args = [ch[f], *args]
        #---------------------------------------------------add
        elif m in [C2f_Ghost]:
            c1, c2 = ch[f], args[0]
            if c2 != nc:  # if not output
                c2 = make_divisible(min(c2, max_channels) * width, 8)
            args = [c1, c2, *args[1:]]
            if m in [C2f_Ghost]:
                args.insert(2, n)  # number of repeats
                n = 1
        #---------------------------------------------------add
        elif m in {HGStem, HGBlock}:
            c1, cm, c2 = ch[f], args[0], args[1]
            args = [c1, cm, c2, *args[2:]]
            if m is HGBlock:
                args.insert(4, n)  # number of repeats
                n = 1
#################################################

3.5 修改__init__.py文件

ultralytics\nn\modules_init_.py,首先在ultralytics\nn\modules新建my_file文件夹,在此文件夹下创建ghost.py,并添加导入此模块,以及在__all__中写入此模块名。

...................
from .my_file.ghost import C2f_Ghost # add

__all__ = (
    "Conv",
    "Conv2",
    #-----------------
    "C2f_Ghost",
    #-----------------
    "LightConv",

3.6 修改训练代码

from ultralytics import YOLOv10
import os
os.environ["GIT_PYTHON_REFRESH"] = "quiet"
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
if __name__ == '__main__':
    model = YOLOv10('my_files/yamls/yolov10s.yaml')
    result = model.train(data="data/data.yaml", epochs=100, workers=1, batch=1, imgsz=416, amp=False, device="cpu")

###################################################################################  恢复训练代码,注释掉上面的部分
# model = YOLOv10("runs/det/train/weights/best.pt")  # 指定想要恢复训练的pt文件
# if __name__ == '__main__':
#     model.train(data="data/data.yaml", resume=True, imgsz=416, batch=16, workers=4, epochs=100, amp=False, project="runs/det")  # 恢复训练模型

运行此代码即可将C2f_Ghost结合YOLOv10进行训练

四、问题总结

  1. ModuleNotFoundError: No module named ‘timm’:
  2. ModuleNotFoundError: No module named ‘einops’
  3. ModuleNotFoundError: No module named ‘hub_sdk’:
  4. ModuleNotFoundError: No module named ‘mmcv’

微信公众号搜索方式:1.AI应用视界;2.可根据CSDN下方名片进行搜索

在这里插入图片描述

目录
相关文章
|
12天前
|
存储 安全 网络安全
云计算与网络安全:技术融合的未来之路
【10月更文挑战第30天】在数字化浪潮的推动下,云计算已成为企业信息技术架构的核心。然而,随之而来的网络安全问题也日益凸显。本文将探讨云计算与网络安全的关系,分析云服务中的安全挑战,并提出相应的解决方案。我们将通过实例展示如何在云计算环境中实现网络安全的最佳实践,以期为读者提供一条技术融合的未来之路。
|
4天前
|
存储 安全 网络安全
云计算与网络安全的融合之路
【10月更文挑战第38天】在数字化浪潮中,云计算和网络安全是推动现代企业前进的两个关键因素。本文深入探讨了云计算服务如何影响网络安全策略,并提供了加强云环境下信息安全的实际措施。文章首先概述了云计算的基本概念及其带来的安全挑战,随后分析了当前网络安全的主要威胁,并提出了相应的防护对策。最后,通过一个代码示例,展示了如何在云环境中实现数据加密,以增强信息的安全性。
|
4天前
|
云安全 安全 网络安全
云计算与网络安全:技术融合的未来之路
【10月更文挑战第38天】 在数字化浪潮中,云计算和网络安全成为支撑现代企业和个人数据安全的两大基石。本文将深入探讨云计算服务如何与网络安全技术相结合,保障信息安全,并分析面临的挑战及未来发展趋势。我们将通过实际案例,揭示云安全的最佳实践,为读者提供一条清晰的技术融合路径。
|
5天前
|
安全 网络安全 数据库
云计算与网络安全:技术融合的未来之路
【10月更文挑战第37天】本文将探讨云计算与网络安全的交汇点,揭示它们如何共同塑造信息安全的未来。我们将深入了解云服务的核心组件、网络安全的关键策略以及两者如何相互增强。通过分析当前的挑战和未来的趋势,本文旨在为读者提供一条清晰的路径,以理解并应对这一不断发展的技术领域。
|
7天前
|
存储 安全 网络安全
云计算与网络安全:技术融合与挑战
【10月更文挑战第35天】本文将探讨云计算与网络安全的交叉点,包括云服务、网络安全和信息安全等技术领域。我们将深入了解云计算的基本概念,以及如何通过云服务实现网络安全和信息安全。同时,我们还将讨论云计算面临的安全挑战,并提出相应的解决方案。最后,我们将通过代码示例展示如何在云计算环境中实现网络安全和信息安全。
22 3
|
10天前
|
存储 安全 网络安全
云计算与网络安全的融合之路
【10月更文挑战第32天】随着云计算技术的飞速发展,越来越多的企业和个人选择将数据和应用程序迁移到云端。然而,云服务的安全性问题也日益凸显。本文将从云服务的分类、特点出发,探讨如何保障云环境下的网络安全和信息安全。通过分析常见的网络威胁和攻击手段,提出相应的防护策略和建议,旨在为读者提供一条云计算与网络安全融合的实践路径。
|
11天前
|
存储 安全 网络安全
云计算与网络安全:技术融合的新篇章
【10月更文挑战第31天】本文将深入探讨云计算与网络安全之间的紧密联系,揭示云服务在信息安全领域的关键作用。文章将通过分析网络安全的挑战、云服务的机遇以及信息安全的未来趋势,为读者提供一个全面的视角。同时,文章还将展示如何通过实际的技术手段和策略来增强云计算环境下的安全性。
21 1
|
8天前
|
监控 安全 网络安全
云计算与网络安全:技术融合下的挑战与机遇
【10月更文挑战第34天】在数字化转型的浪潮中,云计算已成为企业信息技术架构的核心。然而,随之而来的网络安全问题也日益突出。本文将探讨云计算服务中的网络安全挑战,分析信息安全的关键要素,并提供实用的安全策略和最佳实践。我们将通过具体案例,揭示如何在享受云计算带来的便利的同时,保障数据的安全性和完整性。
|
9天前
|
云安全 安全 网络安全
云计算与网络安全:技术融合下的安全挑战与应对策略
【10月更文挑战第33天】在数字化转型的浪潮中,云计算作为支撑现代企业IT架构的核心,其安全性成为业界关注的焦点。本文从云计算服务的基本概念出发,探讨了云环境下的网络安全风险,并分析了信息安全的关键技术领域。通过对比传统网络环境与云端的差异,指出了云计算特有的安全挑战。文章进一步提出了一系列应对策略,旨在帮助企业和组织构建更为坚固的云安全防护体系。最后,通过一个简化的代码示例,演示了如何在云计算环境中实施基本的安全措施。
|
13天前
|
云安全 安全 网络安全
云计算与网络安全:技术融合与挑战
【10月更文挑战第29天】随着云计算技术的飞速发展,其安全性问题也日益凸显。本文从云计算的基本概念出发,深入探讨了云服务模型、网络安全策略以及信息安全实践。文章通过分析云计算环境下的安全隐患,提出了相应的安全措施,旨在为读者提供一个全面而深入的云计算安全视角。同时,文章强调了在云计算时代,维护网络安全的重要性,并鼓励读者积极思考和探索更为高效的安全解决方案。