基于YOLOv8的人员跌倒实时检测系统【训练和系统源码+Pyside6+数据集+包运行】

简介: 本文介绍了基于YOLOv8算法的人员跌倒实时检测系统,通过4978张图片训练出有效模型,并开发了带GUI界面的系统,支持图片、视频和摄像头实时检测,具备更换背景、标题,调节检测置信度等功能。

《往期经典回顾》

项目名称 项目名称 项目名称
1.口罩佩戴检测系统 2.人员抽烟检测系统 3.火焰烟雾检测系统
4.交通车辆检测系统 5.人员跌倒检测系统 6. 安全帽检测系统
7.河道漂浮物检测系统 8.钢铁缺陷检测系统 9. 骑行守护检测系统
10.无人机巡航目标检测系统

一、系统概述和展示🎄

1.1 摘要 🎈

   人员跌倒实时检测系统通过先进的图像处理和人工智能技术,实现对公共场合或特定环境中人员活动的连续监控,可针对跌倒、蹲下、站立三种状态行为进行实时检测,以便及时采取救援措施,降低伤害风险,保障人员生命安全。本文基于YOLOv8算法框架,通过4978张训练图片(其中4035张训练集,943张验证集),训练出一个可用于检测人员跌倒情况的有效检测模型。此外,为更好地展示算法效果,基于此模型开发了一款带GUI界面的基于YOLOv8的人员跌倒实时检测系统,可用于实时检测人员跌倒情况,以及时告警。该系统是基于Python和Pyside6开发并支持以下功能特性

  • 系统背景和标题修改
  • 模型权重导入和初始化
  • 检测置信度和IOU调节
  • 检测目标的信息展示
  • 检测用时的统计展示
  • 图片导入、检测、结果展示、导出和结束
  • 视频导入、检测、结果展示、导出和结束
  • 摄像头导入、检测、结果展示、导出和结束

初始化界面

在这里插入图片描述

检测结果界面

在这里插入图片描述

下面将对部分核心功能进行简单展示

1. 更换背景和标题演示

  • 用户可通过点击更换背景,选择想要更换背景的图片,系统便会自动更换壁纸;
  • 用户可通过点击更换标题,然后在文字输入栏中输入想要更换的标题,然后点击确定,即可更改系统标题。

在这里插入图片描述

2. 模型选择和初始化

  • 用户可通过点击模型选择,选择想要加载的系统模型;然后点击权重初始化即可完成模型的准备工作。

在这里插入图片描述

3. 图片检测演示

  • 用户可通过点击图片中的选择,选择想要加载的图片文件;然后点击检测,等待弹出图片检测完成的提示框,再点击展示即可将对应的目标框展示在原始图片上,完成展示后,用户可手动点击导出将图片保存到指定位置,最后点击结束关闭图片展示区域。
  • 相关展示信息,如耗时、检测目标数量、位置信息等可在检测信息一栏查看。

在这里插入图片描述

4. 视频和摄像头检测演示

  • 用户可通过点击图片中的选择,选择想要加载的图片文件;然后点击检测,等待弹出图片检测完成的提示框,再点击展示即可将对应的目标框展示在原始图片上,完成展示后,用户可手动点击导出将图片保存到指定位置,最后点击结束关闭图片展示区域。
  • 相关展示信息,如耗时、检测目标数量、位置信息等可在检测信息一栏查看。
  • 对于摄像头检测模块和视频检测模块原理类似。
  • 注意摄像头检测会自动调用电脑摄像头来进行检测任务

在这里插入图片描述


二、一站式使用教程🎄

第一步:安装Anaconda Prompt、Pycharm(或者vscode),参考:anaconda点击 pycharm点击

第二步:创建python环境

conda create -n YOLOv8_My python=3.8.1

第三步:激活环境

conda activate YOLOv8_My

第四步:安装ultralytics和pytorch

pip install torch==1.13.1+cu116 torchvision==0.14.1+cu116 torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cu116 -i https://pypi.tuna.tsinghua.edu.cn/simple/
pip install ultralytics==8.1.3 -i https://pypi.tuna.tsinghua.edu.cn/simple

第五步:安装图形化界面库

pip install pyside6==6.6.1 -i https://pypi.tuna.tsinghua.edu.cn/simple

第六步:打开系统界面

python base_camera.py

注意:此环境可同时满足YOLOv8的训练以及系统的运行


三、YOLOv8原理剖析🎄

3.1 YOLOv8背景和技术原理🎈

   权重链接: 点击
   项目地址: 点击
   论文地址:(目前还在火速撰写中)

YOLOv8诞生背景

   YOLOv8是Ultralytics团队基于先前成功的YOLO系列模型推出的最新版本,适用于目标检测、分割、分类任务,以及处理大规模数据集的学习。这个模型不仅能够在多种硬件设备上运行,包括CPU和GPU,而且设计上追求快速、准确且用户友好。YOLOv8引入了一系列创新,包括新的骨干网络、无锚点(Ancher-Free)检测头和损失函数,旨在提升性能和灵活性。此外,该模型支持与早期YOLO版本的兼容,便于用户根据需求切换和比较不同版本。YOLOv8提供了五个不同规模的预训练模型,从n到x,每个模型在参数数量和精度之间取得了不同的平衡,其中较大的模型l和x在减少参数的同时显著提升了精度✅
在这里插入图片描述

YOLOv8技术特点

YOLOv5架构特点

  • Backbone:YOLOv5使用CSPDarknet作为主干网络,它是一种轻量级的Darknet架构,具有更高的速度和更好的性能。
  • PAN/FPN:YOLOv5使用PAN(Path Aggregation Network)来融合不同尺度的特征图,以提高检测性能。
  • Head:YOLOv5的检测头部由多个卷积层组成,用于预测目标的边界框和类别。
  • 样本分配策略:YOLOv5使用IoU阈值来分配正负样本,以平衡正负样本的数量。
  • Loss:包含分类损失(BCEWithLogitsLoss)、定位损失(BCEWithLogitsLoss)、置信度损失(GIOU)。

在这里插入图片描述

YOLOv8架构特点

  • Backbone:
    • 相同:CSP的思想(/梯度分流);并且使用SPPF模块
    • 不同:将C3模块替换为C2f模块
  • PAN/FPN:
    • 相同:PAN的思想
    • 不同:删除了YOLOv5中PAN-FPN上采样的CBS 1*1,将C3模块替换为C2f模块
  • Head:Decoupled head + Anchor-free
  • 样本分配策略:采用了TAL(Task Alignment Learning)动态匹配
  • Loss:
    • 相同:分类损失依然采用 BCE Los
    • 不同:1)舍去物体的置信度损失;2)回归分支loss: CIOU loss+Distribution Focal Loss

在这里插入图片描述

   两者推理过程的区别:在推理过程中,YOLOv5和YOLOv8的主要差异在于coupled head和decoupled head的使用。coupled head是YOLOv5中的一种推理方式,它将Distribution Focal Loss中的积分表示bbox形式进行解码,变成常规的4维度bbox,然后进行后续计算。而decoupled head是YOLOv8中的一种推理方式,它直接使用Distribution Focal Loss中的积分表示bbox形式进行计算,不需要解码过程。

   总结起来,YOLOv5和YOLOv8在架构和推理过程上有一些差异,包括主干网络、特征融合、检测头部、正负样本分配策略和损失函数等方面的差异。其中,在推理过程中,YOLOv5使用coupled head进行bbox解码,而YOLOv8使用decoupled head直接计算积分表示bbox。


四、模型训练、评估和推理🎄

4.1 数据集介绍🎈

   本文使用的是人员跌倒数据集,通过网络采集并标注成YOLO格式,并对此数据集进行了数据增强处理,以增加其鲁棒性。此数据集共包含4978张图片类别为[“UP”,“Down”,“Squat”](站立、跌倒、蹲下),本文实验使用的训练集4035张,验证集943张部分数据集及标注可视化信息如下
在这里插入图片描述

在这里插入图片描述

   图片数据集的存放格式如下,在项目目录中新建datasets目录,同时将YOLO格式数据集images和labels放入指定目录下,然后修改”yolov8\my_file\object_detection\dataset_cfg”下的fall.yaml文件中的path路径指向datasets文件夹(绝对路径)。

datasets:
- images
    - train(此文件夹全是图片)
    - val(此文件夹全是图片)
 - labels
     - train(此文件夹全是txt文件)
     - val(此文件夹全是txt文件)

4.2 模型训练🎈

   数据准备完成后,通过调用detection_train.py文件进行模型训练,data参数用于加载数据集的配置文件,epochs参数用于调整训练的轮数,workers参数用于调整系统的并发能力,batch参数用于调整训练的批次大小【根据内存大小调整,最小为1】,代码如下:

import os
from ultralytics import YOLO
​
current_path = os.path.dirname(os.path.realpath(__file__))
root_path = os.path.abspath(os.path.join(current_path, "../..")) + "/"
​
# Load a mode
model = YOLO(root_path + 'ultralytics/cfg/models/v8/yolov8s.yaml').load(
  root_path + 'weights/det/yolov8s.pt') 

if __name__ == '__main__':
  results = model.train(data=root_path + 'my_file/object_detection/dataset_cfg/fall.yaml', epochs=100, imgsz=416, batch=32, workers=16, lr0=0.01, amp=False, project=root_path+"runs/det")

4.3 结果评估🎈

   在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况,避免过拟合和欠拟合现象。YOLOv8训练过程及结果文件保存在runs/det/目录下,我们可以在训练结束后进行查看,结果如下所示:
在这里插入图片描述

本文训练结果如下

在这里插入图片描述

4.4 模型推理🎈

   模型训练结束后,我们可在runs/det/目录下可以得到一个最新且最佳的训练结果模型best.pt文件,在runs/det/train/weights目录下。我们可使用该文件进行后续的推理检测。

在这里插入图片描述

模型推理代码如下

import os
from ultralytics import YOLO
current_path = os.path.dirname(os.path.realpath(__file__))
root_path = os.path.abspath(os.path.join(current_path, "../.."))+"/"
​
​
model = YOLO(root_path + 'runs/det/train/weights/best.pt')  # load a custom trained# Export the model
​
if __name__ == '__main__':
  model.predict(root_path + 'ultralytics/assets/fall.jpg', save=True, imgsz=416, conf=0.5)

图片推理结果如下

在这里插入图片描述


五、项目完整目录及获取方式介绍🎄

5.1 项目完整目录🎈

   本文涉及到的完整的程序文件:包括环境配置文档说明(训练和系统环境都适用)、模型训练源码、数据集、系统完整代码、系统UI文件、测试图片视频等,获取方式见文末

模型训练代码如下

在这里插入图片描述

系统完整代码如下

在这里插入图片描述

5.2 项目获取方式🎈

   获取链接:见bilibili视频置顶评论 点击
在这里插入图片描述

5.3 作者介绍🎈

   哈喽大家好, AI应用视界工作室致力于深入探索人工智能算法与应用开发的交互,涵盖目标分类、检测、分割、跟踪、人脸识别等关键领域,以及系统架构的创新设计与实现。我们的目标是为广大人工智能研究者提供一个丰富、权威的参考资源,同时也期待与您共同交流,推动人工智能技术的进步。如有相关算法交流学习和技术需求,请关注下方公众号(或者搜索 AI-designer66)可与我们取得联系。
微信公众号搜索方式:1.AI应用视界;2.可根据CSDN下方名片进行搜索


在这里插入图片描述

目录
相关文章
|
1月前
|
机器学习/深度学习 人工智能 算法
基于YOLOv8的人员抽烟实时检测系统【训练和系统源码+Pyside6+数据集+包运行】
基于YOLOv8的人员抽烟实时检测系统,旨在通过2472张图片训练出有效模型,维护无烟环境,预防火灾,保护公众健康。系统支持图片、视频和摄像头检测,具备GUI界面,易于操作。使用Python和Pyside6开发,具备模型权重导入、检测置信度调节等功能。
50 1
基于YOLOv8的人员抽烟实时检测系统【训练和系统源码+Pyside6+数据集+包运行】
|
1月前
|
机器学习/深度学习 人工智能 算法
基于YOLOv8的钢铁缺陷实时检测系统【训练和系统源码+Pyside6+数据集+包运行】
基于YOLOv8的钢铁缺陷实时检测系统,通过1800张图片训练,开发了带GUI界面的检测系统,支持图片、视频和摄像头实时检测,提高生产效率和产品质量。系统基于Python和Pyside6开发,具备模型权重导入、检测置信度调节等功能。项目代码、数据集可通过特定链接获取。
58 1
基于YOLOv8的钢铁缺陷实时检测系统【训练和系统源码+Pyside6+数据集+包运行】
|
1月前
|
机器学习/深度学习 人工智能 算法
基于YOLOV8的口罩佩戴实时检测系统【训练和系统源码+Pyside6+数据集+包运行】
本文介绍了基于YOLOv8算法的口罩佩戴实时检测系统,该系统通过7959张训练图片训练出有效识别模型,开发了带GUI界面的系统,支持图片、视频和摄像头实时检测口罩佩戴情况,提高疫情防控效率。
49 3
基于YOLOV8的口罩佩戴实时检测系统【训练和系统源码+Pyside6+数据集+包运行】
|
1月前
|
机器学习/深度学习 人工智能 算法
基于YOLOv8的工业安全帽实时检测系统【训练和系统源码+Pyside6+数据集+包运行】
基于YOLOv8的工业安全帽实时检测系统,通过7581张图片训练,实现工作场所安全帽佩戴检测,降低工伤事故。系统支持图片、视频和摄像头实时检测,具备GUI界面,易于操作。使用Python和Pyside6开发,提供模型训练、评估和推理功能。
70 1
基于YOLOv8的工业安全帽实时检测系统【训练和系统源码+Pyside6+数据集+包运行】
|
1月前
|
机器学习/深度学习 人工智能 算法
基于YOLOv10的无人机巡航小目标实时检测系统【训练和系统源码+Pyside6+数据集+包运行】
基于YOLOv10的无人机巡航小目标实时检测系统,通过7444张无人机场景训练图片,训练出能检测9类目标的模型,并开发了带GUI界面的系统,支持图片、视频和摄像头实时检测,具备背景和标题更换、模型选择、检测信息展示等功能。
118 0
基于YOLOv10的无人机巡航小目标实时检测系统【训练和系统源码+Pyside6+数据集+包运行】
|
1月前
|
人工智能 算法 安全
基于YOLOv8的交通车辆实时检测系统【训练和系统源码+Pyside6+数据集+包运行】
基于YOLOv8的交通车辆实时检测系统,使用5830张图片训练出有效模型,开发了Python和Pyside6的GUI界面系统,支持图片、视频和摄像头实时检测,具备模型权重导入、检测置信度调节等功能,旨在提升道路安全和改善交通管理。
37 1
基于YOLOv8的交通车辆实时检测系统【训练和系统源码+Pyside6+数据集+包运行】
|
1月前
|
机器学习/深度学习 人工智能 算法
基于YOLOv8的火焰烟雾实时检测系统【训练和系统源码+Pyside6+数据集+包运行】
基于YOLOv8的火焰烟雾实时检测系统,使用6744张图片训练有效模型,开发了带GUI界面的系统,支持图片、视频和摄像头实时检测,具备模型权重导入、检测置信度调节等功能,并提供项目完整代码和数据集。
81 1
基于YOLOv8的火焰烟雾实时检测系统【训练和系统源码+Pyside6+数据集+包运行】
|
1月前
|
机器学习/深度学习 人工智能 算法
基于YOLOV10的反光衣头盔佩戴实时检测系统【训练和系统源码+Pyside6+数据集+包运行】
基于YOLOv10的反光衣头盔佩戴实时检测系统,使用4409张工业场景图片训练,能检测未穿反光衣、穿反光衣、未佩戴头盔、佩戴头盔四种情况,确保工人安全。系统支持更换背景标题、模型选择、图片视频检测等功能,基于Python和Pyside6开发。
66 1
基于YOLOV10的反光衣头盔佩戴实时检测系统【训练和系统源码+Pyside6+数据集+包运行】
|
1月前
|
人工智能 算法 安全
基于YOLOV8的骑行智能守护实时检测系统【训练和系统源码+Pyside6+数据集+包运行】
基于YOLOv8的骑行智能守护实时检测系统,通过图像处理和AI技术,实时监测电动车及骑行者头盔佩戴情况,提升道路安全。该系统支持图片、视频和摄像头实时检测,具备GUI界面,便于操作和展示结果。使用5448张真实场景图片训练,包含电动车和骑行者是否佩戴头盔的三类标注。系统基于Python和Pyside6开发,具备模型权重导入、检测置信度调节等功能。
49 0
基于YOLOV8的骑行智能守护实时检测系统【训练和系统源码+Pyside6+数据集+包运行】
|
1月前
|
机器学习/深度学习 人工智能 算法
基于YOLOv8的河道漂浮物实时检测系统【训练和系统源码+Pyside6+数据集+包运行】
基于YOLOv8的河道漂浮物实时检测系统,利用2400张图片训练有效模型,开发了带GUI界面的系统,支持图片、视频和摄像头检测,具备模型权重导入、检测置信度调节等功能,旨在维护水体生态平衡和环境卫生。
67 0
基于YOLOv8的河道漂浮物实时检测系统【训练和系统源码+Pyside6+数据集+包运行】