人工智能平台PAI
人工智能平台 PAI(Platform for AI,原机器学习平台PAI)是面向开发者和企业的机器学习/深度学习工程平台,提供包含数据标注、模型构建、模型训练、模型部署、推理优化在内的AI开发全链路服务,内置140+种优化算法,具备丰富的行业场景插件,为用户提供低门槛、高性能的云原生AI工程化能力。
AIGC Stable Diffusion文生图Lora模型微调实现虚拟上装
在本教程中,您将学习如何在阿里云交互式建模(PAI-DSW)中,基于Diffusers开源库进行AIGC Stable Diffusion模型的微调训练,以及基于Stable-Diffusion-WebUI开源库启动WebUI进行模型推理。
使用AI焕发那场亚运的精彩--给回忆增添色彩,对未来充满期待
1974年9月1日,第七届亚洲运动会在伊朗首都德黑兰的阿里亚梅尔体育中心的主体育场开幕,这是新中国首次参加亚运会。而今正值亚运110周年,第19届杭州亚运会即将举办。本次通过参与“历久弥新——用 AI 修复亚运会珍贵史料”活动,使用阿里云的 AI 技术对亚运会历史老照片进行修复,重燃亚运经典,为亚运助威。

使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。

EasyPhoto:基于 SD WebUI 的艺术照生成插件来啦!
EasyPhoto 是一个基于 SD WebUI 的艺术照生成开源插件。允许用户通过上传几张同一个人的照片,快速训练Lora模型,然后结合用户自定义的模板图片,生成 真/像/美的写真图片。诚邀开发者们一起体验,多多提ISSUE,一同优化,让每个AIGCer都拥有自己的AI写真相机!
“历久弥新 | 用AI修复亚运珍贵史料”活动震撼来袭!
2023年,正值亚运110周年,也是第19届杭州亚运会即将举办之际,阿里云与亚奥理事会合作,发起“历久弥新——用 AI 修复亚运会珍贵史料”活动,开发者使用阿里云的 AI 技术对亚运会历史老照片进行修复,重燃亚运经典,为亚运助威,并有机会入选“亚运史上第一个 AI 修复特展“。
大数据&AI产品月刊【2023年8月】
大数据&AI产品技术月刊【2023年8月】,涵盖本月技术速递、产品和功能发布、市场和客户应用实践等内容,帮助您快速了解阿里云大数据&AI方面最新动态。
算力中国年度突破成果出炉,PAI灵骏智算上榜!
近日,由工业和信息化部、宁夏回族自治区人民政府共同举办的2023中国算力大会在银川举行。会上公布了算力领域最具影响力专家学者共同评选出的算力中国·年度突破成果,阿里云“PAI灵骏智算服务”作为国内AI智算基础设施代表获得该重磅奖项。

【保姆级教程】用PAI-DSW修复亚运历史老照片
本教程整合了来自开源社区的高质量图像修复、去噪、上色等算法,并使用 Stable Diffusion WebUI 进行交互式图像修复。参与者可以根据需要进行参数调整,组合不同的处理方式以获得最佳修复效果。参与者还可以在活动页面上传修复后的成果图片,参与比赛,获胜者将有机会获得丰厚的奖品。

“用 AI 修复亚运珍贵史料”活动介绍及活动规则【更新获奖名单】
2023年,正值亚运110周年,也是第19届杭州亚运会即将举办之际,阿里云与亚奥理事会合作,发起“历久弥新——用 AI 修复亚运会珍贵史料”活动,开发者使用阿里云的 AI 技术对亚运会历史老照片进行修复,重燃亚运经典,为亚运助威,并有机会入选“亚运史上第一个 AI 修复特展“。
阿里云机器学习PAI全新推出特征平台 (Feature Store),助力AI建模场景特征数据高效利用
机器学习平台 PAI 推出特征平台(PAI-FeatureStore),在所有需要特征的AI建模场景,用户可通过 Feature Store 轻松地共享和重用特征数据,减少资源和时间成本、提升工作效率。
阿里云大语言模型(LLM)实战训练营,火热开营中!
大语言模型实战训练营已正式开营,汇集阿里云、黑马程序员多位AI领域资深技术专家手把手带您快速实现大语言模型从入门到应用落地!完成课程学习任务更有机会领取LAMY钢笔、小米充电宝、双肩包等精美礼品,快来一起学习体验吧~
大数据&AI产品月刊【2023年7月】
大数据&AI产品技术月刊(2023年7月),涵盖本月技术速递、产品和功能发布、市场和客户应用实践等内容,帮助您快速了解阿里云大数据&AI方面最新动态。
快速玩转 Llama2!机器学习 PAI 最佳实践(三)—快速部署WebUI
本实践将采用阿里云机器学习平台PAI-EAS 模块针对 Llama-2-13B-chat 进行部署。PAI-EAS是模型在线服务平台,支持将模型一键部署为在线推理服务或AI-Web应用,具备弹性扩缩的特点,适合需求高性价比模型服务的开发者。
快速玩转 Llama2!机器学习 PAI 最佳实践(二)—全参数微调训练
本实践将采用阿里云机器学习平台PAI-DSW模块针对 Llama-2-7B-Chat 进行全参数微调。PAI-DSW是交互式建模平台,该实践适合需要定制化微调模型,并追求模型调优效果的开发者。
快速玩转 Llama2 机器学习 PAI 最佳实践(一)低代码 Lora 微调及部署
采用阿里云机器学习平台PAI-快速开始模块针对 Llama-2-7b-chat 进行开发。PAI-快速开始支持基于开源模型的低代码训练、布署和推理全流程,适合想要快速开箱体验预训练模型的开发者。
快速玩转 Llama2!阿里云机器学习 PAI 推出最佳实践
近期,Meta 宣布大语言模型 Llama2 开源,阿里云机器学习平台PAI针对 Llama2 系列模型进行适配,推出全量微调、Lora微调、分布式训练、推理服务等场景最佳实践,助力AI开发者快速开箱。
一种可分批此训练的聚类方法
本文介绍了如何将大数据集划分成若干子集,并对每个子集进行聚类分析。为了确保聚类结果的准确性,需要保证每个子集的数据分布相似。文章提出了一种称为“K-均值距离法”的聚类算法,能够有效地解决数据分布不均匀的问题。本篇文章主要介绍了如何将大数据集划分成若干子集,并对每个子集进行聚类分析。在进行子集划分时,需要保证每个子集的数据分布相似,以保证聚类结果的准确性。文章介绍了一种称为“K-均值距离法”的聚类算法,可以有效地解决数据分布不均匀的问题。
【ACL 2023】具有高效推理速度的中文领域文图生成扩散模型和工具链
面向中文特定领域的文图生成模型,采用与Stable Diffusion一样的模型结构,在给定中文文本的情况下可以实现快速的文图生成工作。
【ACL 2023】面向轻量化文图检索的Dual-Encoder模型蒸馏算法ConaCLIP
ConaCLIP针对轻量化的图文检索任务进行设计,是一种通过全连接的知识交互图学习方式将知识从dual-encoder大模型中蒸馏到dual-encoder小模型的算法。
【ACL2023】基于电商多模态概念知识图谱增强的电商场景图文模型FashionKLIP
从大规模电商图文数据中自动化构建多模态概念级知识图谱的方案,随后将概念级多模态先验知识注入到VLP模型中,以实现跨模态图文样本在概念层面进一步对齐。
为什么要使用阿里云pairec来搭建推荐系统?
阿里云Pairec是一个用于搭建推荐系统的云原生解决方案,它可以帮助用户快速搭建高性能、高可用的推荐系统,并提供了代码生成、ab test服务、实验报表后台等多种功能和工具,使得搭建过程更加简单和高效。
阿里云DLC运行DDP Sample
PAI提供的云原生基础AI平台,提供灵活、稳定、易用和高性能的机器学习训练环境。该平台支持多种算法框架、超大规模分布式深度学习任务运行及自定义算法框架。本文演示如何在DLC上面运行Pytorch DDP任务。
预约直播 | 展心展力MetaApp:基于DeepRec的稀疏模型训练实践
阿里云AI技术分享会第十一期《基于DeepRec的稀疏模型训练实践》将在2023年7月5日晚18:00开启直播,精彩不容错过。
大数据&AI产品月刊【2023年6月】
大数据&AI产品技术月刊(2023年6月),涵盖本月技术速递、产品和功能发布、市场和客户应用实践等内容,帮助您快速了解阿里云大数据&AI方面最新动态。
EasyRec在公开数据集上的benchmark测试
在pai平台上可公开读取的数据集,不用再费劲去下载和处理数据集: Taobao 数据集介绍 Avazu CTR 数据集 AliCCP 数据集 CENSUS 数据集
参与赢大奖!阿里云机器学习平台PAI助力开发者激发AIGC潜能
为助力开发者能够一站式快速搭建文生图、对话等热门场景应用,阿里云机器学习平台PAI特推出AIGC加油包,为广大开发者加油助力激发AIGC潜能!
[EuroSys2023 Best Poster] 面向动态图的极低时延GNN推理采样服务
GraphLearn团队和浙大联合发表的论文被评选为EuroSys2023 best poster。
「AIGC创作挑战 | 全网寻找AI艺术家」火热进行中🔥
即日起至7月31日,参赛者按规则完成基础游戏、进阶任务或拉新挑战,三个活动带您实现AIGC从入门到进阶,还有Apple Watch、Lamy钢笔、罗技键盘等精美奖品等您赢~
阿里云DSW实例wandb使用示例
wandb是一个免费的,用于记录实验数据的工具。wandb相比于tensorboard之类的工具,有更加丰富的用户管理,团队管理功能,更加方便团队协作。本文主要演示如何在阿里云DSW实例中使用wandb。
【SIGMOD 2023】深度学习弹性数据流水线系统GoldMiner,大幅提升任务和集群效率
阿里云机器学习平台PAI和北京大学杨智老师团队合作的论文被SIGMOD 2023录用。
PAI-Designer中的EasyRec组件和预制推荐模板介绍
EasyRec是一个配置化的企业级推荐算法框架(https://github.com/alibaba/EasyRec),是阿里云PAI平台自研的适用于推荐广告、搜索场景的深度学习算法库,它实现了多种业界常用的模型,包括DSSM、MIND召回模型,DeepFM、多塔、DIN排序模型,还有ESMM、DBMTL、MMoE等多目标排序模型。 本文介绍EasyRec的PAI-Designer组件和预制模板。

阿里云PAIx达摩院GraphScope开源基于PyTorch的GPU加速分布式GNN框架
阿里云机器学习平台 PAI 团队和达摩院 GraphScope 团队联合推出了面向 PyTorch 的 GPU 加速分布式 GNN 框架 GraphLearn-for-PyTorch(GLT) 。