大模型时代的人工智能+大数据平台,加速创新涌现

简介: 2023年10月31日,2023云栖大会上,阿里云副总裁、阿里云计算平台事业部负责人汪军华宣布阿里云人工智能+大数据平台升级发布,以服务大模型时代下各行各业的业务创新。

大模型和MaaS概念的出现,定义了以模型为中心的一整套AI开发新范式,而这背后日益增长的巨大算力需求,对AI工程底座提出了新的挑战。今天,大模型时代下的人工智能+大数据平台,需要具备计算效率、开发效率、处理效率为一体的高效能力,才能保障服务AI时代下的业务创新。

10月31日,2023云栖大会上,阿里云副总裁、阿里云计算平台事业部负责人汪军华宣布阿里云人工智能+大数据平台升级发布,以服务大模型时代下各行各业的业务创新


1. 高性能的AI基础设施,让计算效率达到极致

根据OpenAI测算,全球用于头部AI模型训练的算力需求以每年10倍的速度增长,计算需求处于持续爆发中。汪军华介绍,PAI灵骏智算集群在网络、存储、调度上做了深度优化,采用HPN 7.0新一代AI集群网络架构,存储计算分离架构,支持高达10万卡量级的集群可扩展规模,让超大规模集群像1台计算机般运转

软硬一体的智算服务PAI灵骏,为大规模深度学习训练场景提供稳定和高效的支撑,大模型训练任务线性加速比可达到96%,大模型训练资源可节省超50%。在稳定性保障方面,PAI灵骏智算服务配置了弹性容错训练框架AIMaster和EasyCkpt模型自动保存与恢复能力,可让千卡规模任务稳定运行3周以上。

面向大模型的推理服务场景,PAI体系化地整合模型系统联合优化、运行时优化、LLM领域优化等能力,可将大语言模型推理吞吐提升3.5倍,大幅降低推理时延。单卡推理可支持的最大上下文长度达280K,超长的上下文推理将进一步推动LLM涌现。


2. 多形态、更灵活的AI开发模式,支撑多样化需求

随着需求的不断涌现,AI开发者和AI开发需求越发细分。人工智能平台PAI 4.0发布,全面降低大模型AI开发门槛,提供完善的需求支撑,提升开发效率


不论是需要定义模型结构和开发流程的深度学习开发者群体,还是有海量大规模计算任务的群体,亦或是需要高效快速串联起训练推理任务的业务算法群体,都可以通过PAI来实现研发,包含各类热门的计算框架、开源模型和开发场景,一站式地完成开发部署。

PAI灵积为广大开发者提供了通过云上API服务,可以用于应用模型开发和开发好的模型调用,允许开发者将大模型能力迅速集成到自己的业务和应用中,在PAI-灵积平台上,开发者不仅可以找到通义系列大模型(包括通义千问,通义万相等等),也可以找到来自业界最优秀的头部大模型,包括ChatGLM,百川,Stable Diffusion等。

汪军华宣布,今天这些模型都通过PAI 灵积上统一的API和SDK对广大开发者开放,开发者只需要几行代码,就能迅速把这些不同类别的大模型的能力,集成到自己的应用中去。


3. 高效的数据服务提升大模型效果,大数据和AI更深融合

在机器学习开发过程中,80%的研发时间有用于数据准备,数据质量决定着大模型的效果,数据处理分析的重要性更加凸显。大数据作为AI基础设施的一部分,阿里云提供了从数据积累、清洗、建模、计算到服务的全套产品化方案,来节省AI开发过程中数据准备的时间。

同时,大数据和AI进行了更深度的融合。阿里云自研大数据处理平台MaxCompute 全面升级DataFrame能力,发布分布式计算框架MaxFrame,100%兼容Pandas等数据处理接口,一行代码即可将原生Pandas自动转为MaxFrame分布式计算,打通数据管理、大规模数据分析、处理到ML开发全流程,打破大数据及AI开发使用边界,大大提高开发效率。

大模型驱动的 AI 时代,AI 场景对数据时效性的要求也越来越高,Flink+Paimon新一代实时湖仓方案,为用户提供一站式数据入湖、实时加工和探查分析能力,拓展 Flink 在数据湖场景的实时计算能力,同时加速 AI 应用。

全托管向量检索服务DashVector正式发布,基于阿里云自研8年的高性能向量检索内核Proxima,提供具备水平拓展能力的云原生、全托管的向量检索服务。Hologres、OpenSearch、Elasticsearch分别升级了向量能力,满足不同场景下性能的提升。全新发布DataWorks Copilot,将大数据平台的一站式统一元数据、统一调度、统一数据集成、统一数据建模与AI大模型能力全面结合, 将AI与业务充分融合,创造新价值。

在面向大模型时代整体大数据AI产品能力升级后,汪军华宣布大数据AI产品全面完成Serverless化,致力于给客户提供开箱即用、按需付费的高性价比产品。作为大模型时代AI的基础设施,阿里云人工智能+大数据平台将坚定、持续的投入研发资源,服务各行各业的业务创新。


相关实践学习
使用PAI+LLaMA Factory微调Qwen2-VL模型,搭建文旅领域知识问答机器人
使用PAI和LLaMA Factory框架,基于全参方法微调 Qwen2-VL模型,使其能够进行文旅领域知识问答,同时通过人工测试验证了微调的效果。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
4月前
|
人工智能 搜索推荐 程序员
当AI学会“跨界思考”:多模态模型如何重塑人工智能
当AI学会“跨界思考”:多模态模型如何重塑人工智能
537 120
|
5月前
|
人工智能 数据挖掘 大数据
人工智能模型决策过程:机器与人类协作成效
决策智能(DI)融合AI与人类判断,提升商业决策质量。通过数据驱动的预测与建议,结合人机协作,实现更高效、精准的业务成果,推动企业迈向数据文化新阶段。(238字)
|
5月前
|
数据采集 传感器 人工智能
没有大数据,哪来人工智能?——聊聊“大数据喂养下的AI进化史”
没有大数据,哪来人工智能?——聊聊“大数据喂养下的AI进化史”
261 6
|
6月前
|
机器学习/深度学习 人工智能 自然语言处理
通用人工智能的标准是什么,与大模型有何区别?发展到什么程度了?
本文深入解析2025年迅猛发展的通用人工智能(AGI),梳理其核心概念、关键技术与现实应用,对比当前主流大模型的差异,并探讨普通人如何在日常生活与工作中体验和应用这一颠覆性技术,展望AGI带来的社会变革与伦理挑战。
2067 5
|
7月前
|
人工智能 自动驾驶 大数据
“AI再聪明,也得靠大数据喂饱它”:聊聊大数据与人工智能的双剑合璧
“AI再聪明,也得靠大数据喂饱它”:聊聊大数据与人工智能的双剑合璧
394 2
|
7月前
|
人工智能 算法 机器人
关于开展“人工智能大模型应用工程师”培训的通知
为贯彻落实《"十四五"机器人产业发展规划》和 2025年政府工作报告关于具身智能的战略部署,推进人工智能与实体经济深度融合,培育专业人才队伍,推动具身智能产业创新发展,工业和信息化部电子工业标准化研究院依据行业标准 SJ/T11805-2022《人工智能从业人员能力要求》,联合北京博创鑫鑫教育科技有限公司定于 2025年7月在广东、大连北京等地举办“人工智能大模型应用工程师”(具身智能实践案例提升与融合创新算法提升)培训,TsingtaoAI负责本次培训的交付事项。
314 12
|
机器学习/深度学习 数据采集 人工智能
深入探索人工智能与大数据的融合之路
本文旨在探讨人工智能(AI)与大数据技术如何相互促进,共同推动现代科技的进步。通过分析两者结合的必要性、挑战以及未来趋势,为读者提供一个全面的视角,理解这一领域内的最新发展动态及其对行业的影响。文章不仅回顾了历史背景,还展望了未来可能带来的变革,并提出了几点建议以促进更高效的技术整合。
|
10月前
|
数据采集 机器学习/深度学习 人工智能
数据驱动智能,智能优化数据——大数据与人工智能的双向赋能
数据驱动智能,智能优化数据——大数据与人工智能的双向赋能
675 4