部署Stable Diffusion玩转AI绘画(GPU云服务器)

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,100CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: 本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。

部署Stable Diffusion玩转AI绘画(GPU云服务器)

1. 实验资源方式简介及开始实验

云起实验室实验资源方式介绍

云起实验室支持实验资源体验、领取免费试用额度、个人账户资源三种实验资源方式。

  • 实验资源体验
  • 资源归属于客户,仅供本次实验使用
  • 实验结束后,实验资源及实验记录将被释放。
  • 资源创建过程需要3~5分钟(视资源不同开通时间有所差异,ACK等资源开通时间较长)。完成实验资源的创建后,在实验室页面左侧导航栏中,单击云产品资源列表,可查看本次实验资源相关信息(例如子用户名称、子用户密码、AK ID、AK Secret、资源中的项目名称等)。
  • 说明:实验环境一旦开始创建则进入计时阶段,建议学员先基本了解实验具体的步骤、目的,真正开始做实验时再进行创建。

  • 领取免费试用额度
  • 使用个人账号开通试用,平台仅提供手册参考。
  • 所有实验操作将保留至您的账号,请谨慎操作。
  • 在实验页面下方卡片会展示本实验支持的试用规格,可以选择你要试用的云产品资源进行开通。您在实验过程中,可以随时用右下角icon唤起试用卡片。阿里云支持试用的产品列表、权益及具体规则说明请参考开发者试用中心
  • 说明:试用云产品开通在您的个人账号下,并占用您的试用权益。如试用超出免费试用额度,可能会产生一定费用。

  • 个人账户资源
  • 使用您个人的云资源进行操作,资源归属于个人。
  • 所有实验操作将保留至您的账号,请谨慎操作。
  • 平台仅提供手册参考,不会对资源做任何操作。
  • 说明:使用个人账户资源,在创建资源时,可能会产生一定的费用,请您及时关注相关云产品资源的计费概述。

准备开始实验

在实验开始前,请您选择其中一种实验资源,单击确认开启实验

说明:每个实验所支持的实验资源方式都不相同,实验不一定能满足有三种实验资源方式,请根据实验的实际情况,进行选择。


2. 安装 Stable Diffusion WebUI

Stable Diffusion 是一个 Python 命令行程序,我们直接使用需要对它的命令和参数有详尽的了解,有一定学习成本。好在,有一个 Stable Diffusion WebUI 的开源项目,可以直接将 Stable Diffusion 的操作通过网页透出,让我们轻松通过 Web 页面就能使用 Stable Diffusion 生成图片。所以,我们选择安装和使用 Stable Diffusion WebUI 来完成实验。

  1. 安装基础工具。

Stable Diffusion WebUI 的安装与运行需要使用到一些工具软件,我们需要先通过 Yum 安装它们。

sudo yum install -y git conda mesa-libGL zlib-devel libjpeg-turbo-devel

初始化Conda:

conda init bash
. ~/.bashrc
  1. 利用Conda创建Python虚拟环境。

这里我们采用官方推荐的Python版本3.10.6:

conda create -y --name py310 python=3.10.6

激活Python3.10.6(重要)

conda activate py310
  1. 拉取 Stable Diffusion WebUI 代码。

接着,我们从 Github 上获取最新的 Stable Diffusion WebUI 代码。

git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git

说明:由于 Github 访问存在不稳定性,可能需要多试几次

项目下载完成后,我们将 Web Terminal 的操作目录设置为项目所在目录。

cd stable-diffusion-webui
  1. 安装项目依赖。

Stable Diffusion 的运行还依赖于需要 Python 包,我们可以通过 PIP 将它们全部准备就绪。

提醒:优于torch体积比较大,以及其他依赖库较多,这里可能需要3~5分钟,具体时长视使用时候的网络连接情况。

pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu117
pip install cython opencv-python-headless gfpgan open-clip-torch xformers pyngrok clip-anytorch
pip install -r requirements_versions.txt
  1. 启动 Stable Diffusion WebUI。

当一切准备就绪,我们可以使用以下命令启动 Stable Diffusion WebUI。

python launch.py --listen

在启动时,Stable Diffusion WebUI 会根据需要下载一些必要模型数据,另外,加载模型也需要花费一些时间,所以我们现在要做的就是耐心等待。当 Terminal 中显示出 Running on local URL: http://0.0.0.0:7860字样,就表示程序已经启动并对外提供服务了。


3. 使用 Stable Diffusion WebUI 生成图片

  1. 获得Stable Diffusion WebUI 访问地址。

当Stable Diffusion WebUI启动后,会对外监听7860端口。我们需要使用http://(ECS公网地址):7860来访问程序。这里的ECS公网地址需要替换成实验室为大家分配的可以访问 ECS 的公网 IP 地址。我们可以在实验室页面左侧导航栏中,点击云产品资源列表查看本次实验资源所分配的 ECS 公网地址。

另外,你还可以使用 Web Terminal 右上角的 + 号新建一个 Terminal 标签页,并在其中执行以下命令直接获得 Stable Diffusion WebUI 的访问地址。

echo "http://"$(curl -s ifconfig.me)":7860/"

  1. 访问Stable Diffusion WebUI。

接着,让我们打开浏览器,输出刚刚获得的访问地址,就可以进入 Stable Diffusion WebUI 的操作界面了。

  1. 使用文字生成图片。

生成图片的操作方式非常简单,只需要在左侧的 Prompt 输出框中填入提示词,之后点击右侧的 Generate 按钮即可。提示词就是生成图片的依据,既可以是描述需要生成内容的词,如:girl, sunset, forest 等;也可以是用于是描述图像属性的词,如:best quality, beautiful, masterpiece 等。我们甚至可以通过提示词选择图片生成的视角、光线、画风;人物的姿势、着装、表情;背景的内容等。

图片生成的速度根据机器配置的不同有所差异。在图片生成的过程中,我们可以在页面上看到生成过程的中间图片逐渐变得清晰。同时,也可以通过进度条直观的了解图片生成的进度和预估剩余时间。


4. 学习使用 LoRA 模型

除了使用基础模型生成图片外,我们还可以使用 LoRA 模型(Low-Rank Adaptation of Large Language Models)进行图片的生成。LoRA 直译为大语言模型的低阶适应,这是微软的研究人员为了解决大语言模型微调而开发的一项技术。LoRA 能够冻结预训练好的模型权重参数,然后在每个 Transformer 块里注入可训练的层,由于不需要对模型的权重参数重新计算梯度,从而大大减少了需要训练的计算量。从实际效果来说,LoRA 模型可以帮助我们生成指定风格、面孔、动作等要求的图片。

  1. 使用LoRA模型。

打开WebUI界面,单击Generate下方的扩展配置图标,之后选择Lora标签,就能看到我们可以使用的LoRA模型了。

在实验场景中,已经准备了数个比较热门的 LoRA 模型,你可以尝试使用它们生成不同风格的图片。

当我们点击某个LoRA模型后,Prompt中会加入<lora:模型名的格式:数字>这些内容。最后的数字代表着LoRA模型的权重,默认为1。接着,我们输入提示词,再单击Generate按钮,就可以使用LoRA模型将文字转化为图片了。

  1. 获得更多的LoRA模型。

如果觉得现有的 LoRA 模型还不符合自己的审美,我们可以从Civitai https://civitai.com/tag/lora等网站里找到许多其他爱好者预先训练好的LoRA 模型,我们只需要将这些模型下载到stable-diffusion-webui/models/Lora目录内(在本实验中,需要放置在/root/models/Lora目录内),接着我们就可以在Stable Diffusion WebUI 中使用它们。如果是新下载的模型没有出现在页面上,可以单击Refresh重新载入它们。

实验链接:https://developer.aliyun.com/adc/scenario/f4c01f9be9224611b35197d545923fda

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
3月前
|
Kubernetes 安全 异构计算
K8S 部署 Deepseek 要 3 天?别逗了!Ollama+GPU Operator 1 小时搞定
最近一年我都在依赖大模型辅助工作,比如 DeepSeek、豆包、Qwen等等。线上大模型确实方便,敲几个字就能生成文案、写代码、做表格,极大提高了效率。但对于企业来说:公司内部数据敏感、使用外部大模型会有数据泄露的风险。
K8S 部署 Deepseek 要 3 天?别逗了!Ollama+GPU Operator 1 小时搞定
|
4月前
|
域名解析 人工智能 弹性计算
DeepSeek服务器繁忙解决方法:使用阿里云一键部署DeepSeek个人网站!
通过阿里云一键部署DeepSeek个人网站,解决服务器繁忙问题。学生用户可领取300元代金券实现0成本部署,普通用户则可用99元/年的服务器。教程涵盖从选择套餐、设置密码到获取百炼API-KEY的全流程,助您快速搭建专属大模型主页,体验DeepSeek、Qwen-max、Llama等多款模型,无需代码,最快5分钟完成部署。支持绑定个人域名,共享亲友使用,日均成本仅约1元。
413 10
|
4月前
|
机器学习/深度学习 人工智能 算法
Stable Virtual Camera:2D秒变3D电影!Stability AI黑科技解锁无限运镜,自定义轨迹一键生成
Stable Virtual Camera 是 Stability AI 推出的 AI 模型,能够将 2D 图像转换为具有真实深度和透视感的 3D 视频,支持自定义相机轨迹和多种动态路径,生成高质量且时间平滑的视频。
198 0
Stable Virtual Camera:2D秒变3D电影!Stability AI黑科技解锁无限运镜,自定义轨迹一键生成
|
27天前
|
Ubuntu 安全 数据安全/隐私保护
在Docker容器中部署GitLab服务器的步骤(面向Ubuntu 16.04)
现在,你已经成功地在Docker上部署了GitLab。这就是我们在星际中的壮举,轻松如同土豆一样简单!星际旅行结束,靠岸,打开舱门,迎接全新的代码时代。Prepare to code, astronaut!
129 12
|
1月前
|
定位技术 数据中心
安徽京准电钟分享:NTP授时服务器极速部署指南
安徽京准电钟分享:NTP授时服务器极速部署指南
144 14
|
2月前
|
人工智能 安全 Shell
Jupyter MCP服务器部署实战:AI模型与Python环境无缝集成教程
Jupyter MCP服务器基于模型上下文协议(MCP),实现大型语言模型与Jupyter环境的无缝集成。它通过标准化接口,让AI模型安全访问和操作Jupyter核心组件,如内核、文件系统和终端。本文深入解析其技术架构、功能特性及部署方法。MCP服务器解决了传统AI模型缺乏实时上下文感知的问题,支持代码执行、变量状态获取、文件管理等功能,提升编程效率。同时,严格的权限控制确保了安全性。作为智能化交互工具,Jupyter MCP为动态计算环境与AI模型之间搭建了高效桥梁。
205 2
Jupyter MCP服务器部署实战:AI模型与Python环境无缝集成教程
|
2月前
|
人工智能 并行计算 监控
在AMD GPU上部署AI大模型:从ROCm环境搭建到Ollama本地推理实战指南
本文详细介绍了在AMD硬件上构建大型语言模型(LLM)推理环境的全流程。以RX 7900XT为例,通过配置ROCm平台、部署Ollama及Open WebUI,实现高效本地化AI推理。尽管面临技术挑战,但凭借高性价比(如700欧元的RX 7900XT性能接近2200欧元的RTX 5090),AMD方案成为经济实用的选择。测试显示,不同规模模型的推理速度从9到74 tokens/秒不等,满足交互需求。随着ROCm不断完善,AMD生态将推动AI硬件多元化发展,为个人与小型组织提供低成本、低依赖的AI实践路径。
554 1
在AMD GPU上部署AI大模型:从ROCm环境搭建到Ollama本地推理实战指南
|
4月前
|
JavaScript 应用服务中间件 nginx
Vue项目部署:如何打包并上传至服务器进行部署?
以上就是Vue项目打包及部署的方法,希望对你有所帮助。描述中可能会有一些小疏漏,但基本流程应该没有问题。记住要根据你的实际情况调整对应的目录路径和服务器IP地址等信息。此外,实际操作时可能会遇到各种问题,解决问题的能力是每一位开发者必备的技能。祝你部署顺利!
780 17
|
4月前
|
存储 人工智能 固态存储
轻量级AI革命:无需GPU就能运算的DeepSeek-R1-1.5B模型及其低配部署指南
随着AI技术发展,大语言模型成为产业智能化的关键工具。DeepSeek系列模型以其创新架构和高效性能备受关注,其中R1-1.5B作为参数量最小的版本,适合资源受限场景。其部署仅需4核CPU、8GB RAM及15GB SSD,适用于移动对话、智能助手等任务。相比参数更大的R1-35B与R1-67B+,R1-1.5B成本低、效率高,支持数学计算、代码生成等多领域应用,是个人开发者和初创企业的理想选择。未来,DeepSeek有望推出更多小型化模型,拓展低资源设备的AI生态。
688 8
|
4月前
|
Docker Python 容器
Docker——阿里云服务器使用Docker部署python项目全程小记
本文记录了我在阿里云服务器上使用Docker部署python项目(flask为例)的全过程,在这里记录和分享一下,希望可以给大家提供一些参考。
442 0

热门文章

最新文章