推荐系统入门之使用ALS算法实现打分预测

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: 本场景介绍如何使用ALS算法实现用户音乐打分预测。

推荐系统入门之使用ALS算法实现打分预测


1. 开通机器学习PAI服务

说明:本场景使用的机器学习PAI服务依赖于MaxCompute大数据计算服务,在运行实验时将会消耗大约2.5元的计算费用,请确保您的账户余额充足。

1.  使用您的阿里云账号登录阿里云官网

2.  在顶部的导航栏,依次将鼠标悬停到产品>人工智能处,然后单击机器学习平台PAI

3.  在机器学习PAI控制台首页,单击立即开通

4.  在服务开通页面,选择要开通的机器学习PAI服务所在的区域,例如华东2(上海),然后单击页面下方的立即购买

5.  在订单确认页面,仔细阅读《机器学习(PAI)服务协议》后,勾选我已阅读并同意,最后单击立即开通

6.  开通成功后,单击前往PAI管理控制台

2. 创建PAI Studio项目

1.  在控制台左侧导航栏,单击可视化建模(Studio)

2.  在PAI Studio页面单击创建项目

3.  在右侧弹出的创建项目页面,MaxCompute选择按量付费,填入项目名称,然后单击确定。

PAI Studio底层计算依赖MaxCompute,如果您未开通过当前区域的MaxCompute,请按照页面提示去购买。

   a.  单击购买

   b.  选择步骤一开通的机器学习PAI服务所在区域,例如华东2(上海),然后单击立即购买

   c.  仔细阅读《大数据计算服务MaxCompute(按量计算)服务协议》后,勾选我已阅读并同意,最后单击立即开通

   d.  开通成功后返回PAI Studio控制台页面,再次单击创建项目,在创建项目页面选择MaxCompute付费方式为按量付费,然后填入项目名称,最后单击确认

4.  项目创建需要1分钟左右进行初始化,等待项目操作列出现进入机器学习,表示项目创建完成。

3. 创建实验

1.  单击左侧导航栏的首页

2.  在模板列表找到ALS实现音乐推荐,然后单击从模板创建

3.  在弹出的新建实验框,单击确定

4. 查看实验模板

在该模板中已经默认配置了实验的数据源和ALS矩阵分解组件的参数。

1.  右键单击数据源节点,然后单击查看数据。

显示的数据如下。

该数据源包含4个字段,其中:

  • user:用户ID。
  • item:音乐ID。
  • score:user对item的评分。

2.  单击ALS矩阵分解-1节点,右侧显示如下,可以看到字段设置已设置为与数据源中的字段一致。

3.  单击右侧的参数设置,可以看到模板中默认的算法参数。

5. 运行实验

1.  单击左上角运行。

2.  请耐心等待3~5分钟,实验运行完成如下所示。

6. 查看实验结果

本实验中会输出2张表,对应ALS算法中的X矩阵和Y矩阵。

1.  实验运行完成后,右键单击画布中的ALS矩阵分解-1,在快捷菜单,选择查看数据 > 查看输出桩1,即可查看矩阵X。

2.  右键单击画布中的ALS矩阵分解-1,在快捷菜单,选择查看数据 > 查看输出桩2,即可查看矩阵Y。

7. 预测评分

例如要预测user1对音乐978130429的评分,只要将下方两个向量相乘即可。

  • user1:[-0.14220297,0.8327106,0.5352268,0.6336995,1.2326205,0.7112976,0.9794858,0.8489773,0.330319,0.7426911]
  • item978130429:[0.2431642860174179,0.6019538044929504,0.4035401940345764,0.254305899143219,0.4056856632232666,0.46871861815452576,0.3701469600200653,0.3757922947406769,0.26486095786094666,0.37488409876823425]

经计算,两个向量相乘的结果为2.7247730805432644,可以预测user1对音乐978130429的评分为2.7247730805432644。

实验链接:https://developer.aliyun.com/adc/scenario/c62ae139fc4c40e4aceaef0e8cca8eed

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
4月前
|
机器学习/深度学习 人工智能 算法
深度学习入门:理解神经网络与反向传播算法
【9月更文挑战第20天】本文将深入浅出地介绍深度学习中的基石—神经网络,以及背后的魔法—反向传播算法。我们将通过直观的例子和简单的数学公式,带你领略这一技术的魅力。无论你是编程新手,还是有一定基础的开发者,这篇文章都将为你打开深度学习的大门,让你对神经网络的工作原理有一个清晰的认识。
|
5月前
|
搜索推荐 前端开发 数据可视化
【优秀python web毕设案例】基于协同过滤算法的酒店推荐系统,django框架+bootstrap前端+echarts可视化,有后台有爬虫
本文介绍了一个基于Django框架、协同过滤算法、ECharts数据可视化以及Bootstrap前端技术的酒店推荐系统,该系统通过用户行为分析和推荐算法优化,提供个性化的酒店推荐和直观的数据展示,以提升用户体验。
197 1
【优秀python web毕设案例】基于协同过滤算法的酒店推荐系统,django框架+bootstrap前端+echarts可视化,有后台有爬虫
|
2月前
|
机器学习/深度学习 算法 Python
机器学习入门:理解并实现K-近邻算法
机器学习入门:理解并实现K-近邻算法
42 0
|
3月前
|
机器学习/深度学习 算法 搜索推荐
django调用矩阵分解推荐算法模型做推荐系统
django调用矩阵分解推荐算法模型做推荐系统
50 4
|
4月前
|
前端开发 搜索推荐 算法
中草药管理与推荐系统Python+Django网页界面+推荐算法+计算机课设系统+网站开发
中草药管理与推荐系统。本系统使用Python作为主要开发语言,前端使用HTML,CSS,BootStrap等技术和框架搭建前端界面,后端使用Django框架处理应用请求,使用Ajax等技术实现前后端的数据通信。实现了一个综合性的中草药管理与推荐平台。具体功能如下: - 系统分为普通用户和管理员两个角色 - 普通用户可以登录,注册、查看物品信息、收藏物品、发布评论、编辑个人信息、柱状图饼状图可视化物品信息、并依据用户注册时选择的标签进行推荐 和 根据用户对物品的评分 使用协同过滤推荐算法进行推荐 - 管理员可以在后台对用户和物品信息进行管理编辑
99 12
中草药管理与推荐系统Python+Django网页界面+推荐算法+计算机课设系统+网站开发
|
3月前
|
机器学习/深度学习 算法
机器学习入门(三):K近邻算法原理 | KNN算法原理
机器学习入门(三):K近邻算法原理 | KNN算法原理
|
3月前
|
机器学习/深度学习 算法 大数据
机器学习入门:梯度下降算法(下)
机器学习入门:梯度下降算法(下)
|
3月前
|
机器学习/深度学习 算法 API
机器学习入门(五):KNN概述 | K 近邻算法 API,K值选择问题
机器学习入门(五):KNN概述 | K 近邻算法 API,K值选择问题
|
3月前
|
机器学习/深度学习 算法
机器学习入门:梯度下降算法(上)
机器学习入门:梯度下降算法(上)
|
5月前
|
搜索推荐 前端开发 算法
基于用户画像及协同过滤算法的音乐推荐系统,采用Django框架、bootstrap前端,MySQL数据库
本文介绍了一个基于用户画像和协同过滤算法的音乐推荐系统,使用Django框架、Bootstrap前端和MySQL数据库构建,旨在为用户提供个性化的音乐推荐服务,提高推荐准确性和用户满意度。
376 7
基于用户画像及协同过滤算法的音乐推荐系统,采用Django框架、bootstrap前端,MySQL数据库
下一篇
开通oss服务