NoSQL数据库
阿里云NoSQL数据库提供了一种灵活的数据存储方式,可以支持各种数据模型,包括文档型、图型、列型和键值型。此外,它还提供了一种分布式的数据处理方式,可以支持高可用性和容灾备份。包含Redis社区版和Tair、多模数据库 Lindorm、MongoDB 版。
Redis经典问题:缓存雪崩
本文介绍了Redis缓存雪崩问题及其解决方案。缓存雪崩是指大量缓存同一时间失效,导致请求涌入数据库,可能造成系统崩溃。解决方法包括:1) 使用Redis主从复制和哨兵机制提高高可用性;2) 结合本地ehcache缓存和Hystrix限流降级策略;3) 设置随机过期时间避免同一时刻大量缓存失效;4) 使用缓存标记策略,在标记失效时更新数据缓存;5) 实施多级缓存策略,如一级缓存失效时由二级缓存更新;6) 通过第三方插件如RocketMQ自动更新缓存。这些策略有助于保障系统的稳定运行。
快速掌握Redis优化要点,告别性能瓶颈!
# Redis优化指南 了解如何提升Redis性能,从读写方式(整体与部分)、KV size、Key数量、读写峰值、命中率、过期策略、平均穿透加载时间、可运维性、安全性等方面着手。选择合适的读写策略,如只整体读写或部分读写变更,优化KV size避免过大或差异过大,合理管理Key数量,应对不同读写峰值,监控命中率并持续优化,设置智能过期策略,减少平均穿透加载时间,确保高可运维性并强化安全性。一起探索Redis的性能潜力!
探秘Redis分布式锁:实战与注意事项
本文介绍了Redis分区容错中的分布式锁概念,包括利用Watch实现乐观锁和使用setnx防止库存超卖。乐观锁通过Watch命令监控键值变化,在事务中执行修改,若键值被改变则事务失败。Java代码示例展示了具体实现。setnx命令用于库存操作,确保无超卖,通过设置锁并检查库存来更新。文章还讨论了分布式锁存在的问题,如客户端阻塞、时钟漂移和单点故障,并提出了RedLock算法来提高可靠性。Redisson作为生产环境的分布式锁实现,提供了可重入锁、读写锁等高级功能。最后,文章对比了Redis、Zookeeper和etcd的分布式锁特性。
【MongoDB系列笔记】MongoDB相关概念
MongoDB 是一个开源、高性能、无模式的文档型数据库,常用于处理高并发、海量数据的场景,尤其适合社交、游戏、物流、物联网和视频直播等领域。与传统的关系型数据库相比,MongoDB 更适合存储结构较为灵活、数据量大且事务性要求不高的数据。当面临高读写需求、大规模数据存储和高可扩展性需求时,可以选择 MongoDB。MongoDB 支持类似于 JSON 的 BSON 数据格式,具有丰富的数据模型,如文档、集合和数据库,以及强大的查询和索引功能。此外,MongoDB 提供复制集以实现高可用性和水平扩展性,以适应业务发展和数据增长。
为什么要用 Tair 来服务低延时场景 - 从购物车升级说起
“购物车升级”是今年双十一期间提升用户体验的关键项目,展示了大淘宝技术团队致力于通过技术突破消费者和商家体验的天花板。低延迟是这些挑战中的核心,内存数据库Tair因其高吞吐、大连接数、热点请求处理、异常流量管理和复杂计算逻辑优化等特点,在低延迟场景下表现出色。Tair使用内存/SCM混合存储和各种索引来提供低延迟服务,并通过无锁并发、水平扩展分区等技术应对高并发。此外,Tair还通过热点策略、流控和执行流程优化等手段确保在大促时的稳定性和性能。Tair在双十一期间支持了购物车、销量统计、卖家优惠券召回和互动场景等多种业务,展现其低延迟和高并发的能力。
Redis经典问题:缓存穿透
本文介绍了缓存穿透问题在分布式系统和缓存应用中的严重性,当请求的数据在缓存和数据库都不存在时,可能导致数据库崩溃。为解决此问题,提出了五种策略:接口层增加校验、缓存空值、使用布隆过滤器、数据库查询优化和加强监控报警机制。通过这些方法,可以有效缓解缓存穿透对系统稳定性的影响。
深入剖析Redis哨兵模式的原理和应用
Redis的哨兵模式是实现高可用性和自动故障转移的机制,当主服务器故障时,哨兵能自动检测并进行故障转移,确保服务连续和稳定性。哨兵模式通过监控主从服务器状态、自动故障转移、防止数据不一致,提高容错能力和负载均衡,降低运维成本,实现高可用性。哨兵通过检测主观下线和客观下线状态,以及选举Leader Sentinel来协调故障转移。Raft算法在其中用于领导者选举和状态一致性。哨兵模式通过综合考虑多种因素选举新主服务器并执行故障转移,保障集群稳定运行。
【Redis系列笔记】Redis总结
Redis是一个基于内存的 key-value 结构数据库。 Redis 是互联网技术领域使用最为广泛的存储中间件。 Redis是用C语言开发的一个开源的高性能键值对(key-value)数据库,官方提供的数据是可以达到100000+的QPS(每秒内查询次数)。 它存储的value类型比较丰富,也被称为结构化的NoSql数据库。
最佳实践|如何使用c++开发redis module
本文将试着总结Tair用c++开发redis module中遇到的一些问题并沉淀为最佳实践,希望对redis module的使用者和开发者带来一些帮助(部分最佳实践也适用于c和其他语言)。
【Redis系列笔记】分布式锁
分布式锁:满足分布式系统或集群模式下多进程可见并且互斥的锁。 分布式锁的核心思想就是让大家都使用同一把锁,只要大家使用的是同一把锁,那么我们就能锁住线程,不让线程进行,让程序串行执行,这就是分布式锁的核心思路
【Redis系列笔记】内存淘汰及过期删除
Redis是一个内存键值对数据库,所以对于内存的管理尤为重要。Redis内部对于内存的管理主要包含两个方向,过期删除策略和数据淘汰策略。内存淘汰策略指在Redis内存使用达到一定阈值的时候,执行某种策略释放内存空间,以便于接收新的数据。数据过期删除策略是指在数据的有效时间到期后,如何从内存中删除这些数据的规则。
透视Redis集群:心跳检测如何维护高可用性
Redis心跳检测保障集群可靠性,通过PING命令检测主从连接状态,预防数据丢失。当连接异常时,自动触发主从切换。此外,心跳检测辅助实现`min-slaves-to-write`和`min-slaves-max-lag`策略,避免不安全写操作。还有重传机制,确保命令无丢失,维持数据一致性。合理配置心跳检测,能有效防止数据问题,提升Redis集群的高可用性。关注“软件求生”获取更多Redis知识!
【Redis系列笔记】Redis集群
集群是一种在多个计算机或服务器之间分配和管理任务的方式。它们被广泛应用于大型计算任务、数据处理、网络服务和高性能计算等领域。在Redis中,主要有以下三种集群,分别是主从集群,哨兵集群,分片集群。
Redis集群模式:高可用性与性能的完美结合!
小米探讨Redis集群模式,通过一致性哈希分散负载,主从节点确保高可用性。节点间健康检测、主备切换、数据复制与同步、分区策略和Majority选举机制保证服务可靠性。适合高可用性及性能需求场景,哨兵模式则适用于简单需求。一起学习技术的乐趣!关注小米微信公众号“软件求生”获取更多内容。
探秘Redis读写策略:CacheAside、读写穿透、异步写入
本文介绍了 Redis 的三种高可用性读写模式:CacheAside、Read/Write Through 和 Write Behind Caching。CacheAside 简单易用,但可能引发数据不一致;Read/Write Through 保证数据一致性,但性能可能受限于数据库;Write Behind Caching 提高写入性能,但有数据丢失风险。开发者应根据业务需求选择合适模式。
【Redis系列笔记】Redis事务
Redis事务的本质是一组命令的集合。事务支持一次执行多个命令,一个事务中所有命令都会被序列化。在事务执行过程,会按照顺序串行化执行队列中的命令,其他客户端提交的命令请求不会插入到事务执行命令序列中。
Redis多级缓存指南:从前端到后端全方位优化!
本文探讨了现代互联网应用中,多级缓存的重要性,特别是Redis在缓存中间件的角色。多级缓存能提升数据访问速度、系统稳定性和可扩展性,减少数据库压力,并允许灵活的缓存策略。浏览器本地内存缓存和磁盘缓存分别优化了短期数据和静态资源的存储,而服务端本地内存缓存和网络内存缓存(如Redis)则提供了高速访问和分布式系统的解决方案。服务器本地磁盘缓存因I/O性能瓶颈和复杂管理而不推荐用于缓存,强调了内存和网络缓存的优越性。
揭秘Redis的高效失效策略,提升可用性
Redis是广泛使用的开源内存数据库,其高性能和多样性使其在现代应用中不可或缺。然而,内存限制和数据管理是关键挑战。本文探讨了Redis的失效策略,包括内存淘汰(如LRU和LFU)和缓存失效策略(定时清除、惰性清除和定时扫描清除),以应对内存耗尽、数据过期等问题,确保系统性能和稳定性。通过合理配置这些策略,可以优化内存使用,防止数据不一致,提升系统效率。
【Redis系列笔记】双写一致性
本文讨论了缓存不一致问题及其后果,如价格显示错误和订单计算错误。问题主要源于并发和双写操作的异常。解决方案包括使用分布式锁(但可能导致性能下降和复杂性增加)、延迟双删策略(通过延迟删除缓存来等待数据同步)以及异步同步方法,如通过Canal和MQ实现数据的最终一致性。面试中,可以提及这些策略来确保数据库和缓存数据的一致性。
Redis分区指南:如何实现高可用与扩展性
本文由技术小伙伴小米讲解Redis分区容错中的数据分区。内容涉及Hash、一致性Hash、Codis的Hash槽和RedisCluster四种方法。Hash简单但不稳定,数据迁移和分区不均衡是其主要问题;一致性Hash通过最小化数据迁移实现负载均衡,但仍有局限;Codis的Hash槽提供灵活的负载均衡和在线迁移;RedisCluster是官方高可用、可扩展的解决方案。每种方案有优缺点,需根据实际需求选择。
使用Redis实例搭建网上商城的商品相关性分析程序
本教程将指导您如何快速创建实例并搭建网上商城的商品相关性分析程序。(ApsaraDB for Redis)是兼容开源Redis协议标准的数据库服务,基于双机热备架构及集群架构,可满足高吞吐、低延迟及弹性变配等业务需求。
【Redis系列笔记】缓存三剑客
缓存穿透是指请求一个不存在的数据,缓存层和数据库层都没有这个数据,这种请求会穿透缓存直接到数据库进行查询。它通常发生在一些恶意用户可能故意发起不存在的请求,试图让系统陷入这种情况,以耗尽数据库连接资源或者造成性能问题。 缓存击穿发生在访问热点数据,大量请求访问同一个热点数据,当热点数据失效后同时去请求数据库,瞬间耗尽数据库资源,导致数据库无法使用。 缓存雪崩是缓存中大量key失效后当高并发到来时导致大量请求到数据库,瞬间耗尽数据库资源,导致数据库无法使用。
Redis内存碎片详解
Redis在存储数据时可能申请超过实际需求的内存,导致内存碎片。内存碎片率=used_memory_rss/used_memory,大于1.5时需清理。Redis 4.0-RC3后引入`activedefrag`配置来自动整理内存,可通过`config set`命令启用,并通过`active-defrag-ignore-bytes`和`active-defrag-threshold-lower`参数设定清理条件。内存清理可能影响性能,`active-defrag-cycle-min`和`active-defrag-cycle-max`参数调整CPU占用比例以缓解
【Redis系列笔记】持久化
Redis的确是将数据存储在内存的,但是也会有相关的持久化机制将内存持久化备份到磁盘,以便于重启时数据能够重新恢复到内存中,避免数据丢失的风险。有三种持久化方式——RDB,AOF,混合持久化。RDB持久化是形成数据快照,把内存中的所有数据都记录到磁盘中,是全量持久化。AOF持久化是把Redis处理的每一个写命令都会记录在AOF文件,可以看做是命令日志文件,是增量化持久。混合持久化则结合两者。
Redis核心开发者的新征程:阿里云与Valkey社区的技术融合与创新
阿里云瑶池数据库团队后续将持续参与Valkey社区,如过往在Redis社区一样耕耘,为开源社区作出持续贡献。
认识HIS系统 HIS系统的主要功能解释说明
HIS系统即医院信息系统(全称为Hospital information System) ,是指利用计算机软硬件技术和网络通信技术等现代化手段,对医院及其所属各部门的人流、物流、财流进行综合管理,对在医疗活动各阶段产生的数据进行采集、存储、处理、提取、传输、汇总,加工形成各种信息,从而为医院的整体运行提供全面的自动化管理及各种服务的信息系统。
使用Java实现从数据库查出数据存入Redis,并在查询时先查Redis,如果Redis中没有数据再从数据库中读取
使用Java实现从数据库查出数据存入Redis,并在查询时先查Redis,如果Redis中没有数据再从数据库中读取
Redis客户端Lettuce深度分析介绍(上)
Spring Boot自2.0版本开始默认使用Lettuce作为Redis的客户端(注1)。Lettuce客户端基于Netty的NIO框架实现,对于大多数的Redis操作,只需要维持单一的连接即可高效支持业务端的并发请求 —— 这点与Jedis的连接池模式有很大不同。同时,Lettuce支持的特性更加全面,且其性能表现并不逊于,甚至优于Jedis。本文通过分析Lettuce的特性和内部实现(基于6.0版本),及其与Jedis的对照比较,对这两种客户端,以及Redis服务端进行深度探讨。
【Redis系列笔记】Redis入门
本文介绍了Redis常用命令,以及SpringBoot集成Spring Data Redis和Spring Cache。Spring Data Redis 提供了对 Redis 的操作方法,而 Spring Cache 则提供了基于注解的缓存功能,可以方便地将方法的返回值缓存到 Redis 中,以提高性能和减少对数据源的访问次数。这样的集成可以帮助开发者更便捷地利用 Redis 来管理应用程序的数据和缓存。
Redis分区容错秘诀:解密主从模式
Redis主从模式用于提高高可用性、负载均衡和数据备份。主节点处理写入,从节点复制数据并分担读取,实现故障切换和读写分离。配置主从关系后,从节点连接主节点进行全量和增量复制。当主节点故障,从节点可接管服务。然而,主从延迟和数据不一致性是挑战,可通过优化网络、使用Sentinel和Redis Cluster等解决。关注“软件求生”获取更多内容。
java智慧城管源码 AI视频智能分析 可直接上项目
Java智慧城管源码实现AI视频智能分析,适用于直接部署项目。系统运用互联网、大数据、云计算和AI提升城市管理水平,采用“一级监督、二级指挥、四级联动”模式。功能涵盖AI智能检测(如占道广告、垃圾处理等)、执法办案、视频分析、统计分析及队伍管理等多个模块,利用深度学习优化城市管理自动化和智能化,提供决策支持。
Nosql学习之路:云原生多模数据库Lindorm训练营第一弹来啦
Lindorm训练营系列将通过一系列由浅入深的高质量课程和丰富的动手实验,将理论与实践结合,带你从入门到成为高阶开发者。参营学习还有机会获得惊喜彩蛋~
【Redis】利用 Redis List 实现 Java 数据库分页快速查询
在大型应用中,数据库分页查询是日常开发中不可避免的需求之一。随着数据量的不断增加,传统的数据库分页方式可能会变得效率较低。为了解决这一问题,本文将介绍如何使用 Redis List 数据结构,结合 Java 编程语言,实现高效的数据库分页查询。
四种类型的nosql数据库
随着互联网的发展,传统关系型数据库已经不能满足大数据时代的需求。NoSQL数据库应运而生,它们具有高可扩展性、高性能和高可用性等优点。本文将介绍四种主要类型的NoSQL数据库,分别是键值存储数据库、文档存储数据库、列存储数据库和图形数据库。这些数据库在不同的场景下有着不同的应用,可以满足不同的需求。