NoSQL数据库
阿里云NoSQL数据库提供了一种灵活的数据存储方式,可以支持各种数据模型,包括文档型、图型、列型和键值型。此外,它还提供了一种分布式的数据处理方式,可以支持高可用性和容灾备份。包含Redis社区版和Tair、多模数据库 Lindorm、MongoDB 版。
海量数据下Lindorm查询实践
本教程将提供一台ECS 和云数据库Lindorm集群,带您体验通过 Lindorm SQL来查询信用卡客户的模拟数据,查看高并发请求下的,Lindorm响应时间的稳定性。
如何实现一个数据库的 UDF?图数据库 NebulaGraph UDF 功能背后的设计与思考
UDF 允许用户自定义函数来扩展数据库管理系统的功能,如何实现一个数据库的 UDF 功能呢?先从一条查询语句开始,我们来分析下它的生命周期,再…
用 nebula_dart_gdbc 在移动设备玩图数据库,泰酷辣!
当 Dart 遇上数据库,如何实现二者的相结合,让用户在移动端操作数据库呢?本文给出了它的答案,先搞定数据库数据访问接口,再搞定数据传输,最后是封装连接,一切就那么简单。
数据库重构之路,以 OrientDB 到 NebulaGraph 为例
在业务逻辑复杂、技术栈不甚了解的情况下,如何在有限的时间完成对数据库的重构迁移工作?技术方案该如何拟定,灰度计划怎么拟定,项目排期如何规划…本文给你一个通用的解决思路,让你更好地完成数据库重构工作。
如何实现MongoDB数据的快速迁移?
为解决用户面临的 MongoDB 迁移问题,玖章算术旗下的云原生智能数据管理平台 NineData 推出了 MongoDB 业务不停服数据迁移能力。NineData 实现了完全自动化的全量数据迁移,以及增量数据的采集复制能力。
Graph + LLM 实践指南|如何使用自然语言进行知识图谱构建和查询
经过悦数研发团队的努力和与国际多家知名大语言模型 LLM 技术团队的合作,目前悦数图数据库的产品已经可以实现基于 Graph + LLM 技术的 Text2Cypher,即自然语言生成图查询。用户只需要在对话界面中通过自然语言就可以轻松实现知识图谱的构建和查询,更有开箱即用的企业级服务,欢迎大家在文末点击试玩体验新一代的悦数图数据库 x 知识图谱应用吧!
Graph + LLM|图数据库技术如何助力行业大语言模型应用落地
图数据库作为处理复杂数据结构的有力工具,为企业构建行业大语言模型提供了强大的支持。本文将探讨图数据库和图技术在帮助企业构建行业大语言模型方面的应用,以及它们如何提高语言模型的智能性和适用性。
使用秘籍|如何实现图数据库 NebulaGraph 的高效建模、快速导入、性能优化
NebulaGraph 技术社区用户的实践优化心得集大成者,从数据建模开始,解决数据膨胀问题,再到软硬皆施搞定数据导入的速率,到最后的查询语句优化。一站式搞定数据库的性能问题。
保障安全与可扩展性:Redis安全设置与集群扩展
本篇深入探讨了Redis的安全性设置以及构建可扩展的Redis集群的方法。我们首先介绍了如何通过设置密码、禁用危险命令和限制访问来加强Redis的安全性。进一步地,我们讨论了如何进行访问控制和权限管理,以确保只有授权用户可以访问和操作Redis。
Redis性能监测与故障排除:保障稳定性与优化性能
本篇深入探讨了如何监测Redis性能、使用性能分析工具优化性能,以及排除常见故障的方法。我们首先介绍了通过Redis的INFO命令获取服务器状态和性能信息,为实时监测提供了手段。进一步地,我们探讨了使用--latency选项的redis-cli工具来检测Redis命令延迟,帮助用户了解性能瓶颈。
Redis地理位置和搜索:实现位置服务和简单搜索引擎
本篇深入研究了Redis的地理位置数据类型及其应用,以及如何基于Redis构建一个简单的搜索引擎。我们首先介绍了地理位置数据类型(Geo),展示了如何使用它来存储位置信息,并进行位置查询、距离计算以及附近位置搜索。通过代码示例,读者可以了解如何利用地理位置数据类型实现位置服务。
Redis缓存应用与最佳实践:优化性能与处理挑战
本篇深入探讨了Redis在缓存应用中的最佳实践,旨在优化性能并处理常见的缓存挑战。我们首先介绍了设计高效缓存架构的基本原则,展示了如何使用Redis作为缓存存储来提升应用性能。进一步地,我们讨论了缓存更新策略,演示了如何在源数据更新时同时更新缓存,以确保数据的一致性。
探索Redis发布订阅与消息队列:构建实时消息通信系统
本篇深入探讨了Redis的发布订阅模式和消息队列功能,展示了如何使用这两个特性构建实时消息通信系统。我们首先介绍了Redis的发布订阅模式,演示了如何通过PUBLISH命令将消息发布到特定频道,并使用SUBSCRIBE和UNSUBSCRIBE命令进行订阅和取消订阅操作。
Redis性能优化与高可用架构探究
本篇全面探讨了Redis的性能优化与高可用架构,为读者提供了深入了解如何使Redis在高负载环境下实现卓越性能和可靠性的实际操作示例。我们首先介绍了内存优化策略,通过设置最大使用内存和数据淘汰策略,有效地管理内存资源,提高系统性能。接着,详细讨论了数据淘汰机制,以LRU(最近最少使用)策略为例,说明了如何清理不常用的数据,保持系统稳定。