计算机视觉
包含图像分类、图像生成、人体人脸识别、动作识别、目标分割、视频生成、卡通画、视觉评价、三维视觉等多个领域
Ruyi:图森未来推出的图生视频大模型,支持多分辨率、多时长视频生成,具备运动幅度和镜头控制等功能
Ruyi是图森未来推出的图生视频大模型,专为消费级显卡设计,支持多分辨率、多时长视频生成,具备首帧、首尾帧控制、运动幅度控制和镜头控制等特性。Ruyi基于DiT架构,能够降低动漫和游戏内容的开发周期和成本,是ACG爱好者和创作者的理想工具。
BrushEdit:腾讯和北京大学联合推出的图像编辑框架,通过自然语言指令实现对图像的编辑和修复
BrushEdit是由腾讯、北京大学等机构联合推出的先进图像编辑框架,结合多模态大型语言模型和双分支图像修复模型,支持基于指令引导的图像编辑和修复。
ClotheDreamer:上海大学联合腾讯等高校推出的3D服装生成技术
ClotheDreamer是由上海大学、上海交通大学、复旦大学和腾讯优图实验室联合推出的3D服装生成技术,能够根据文本描述生成高保真、可穿戴的3D服装资产,适用于虚拟试穿和物理精确动画。
MVPaint:腾讯PCG联合多所高校共同推出的3D纹理生成框架
MVPaint是由腾讯PCG联合多所高校共同推出的3D纹理生成框架,基于同步多视角扩散技术,实现高分辨率、无缝且多视图一致的3D纹理生成。该框架包含三个核心模块:同步多视角生成、空间感知3D修补和UV细化,显著提升3D模型的纹理生成效果。
TrajectoryCrafter:腾讯黑科技!单目视频运镜自由重构,4D生成效果媲美实拍
TrajectoryCrafter 是腾讯与香港中文大学联合推出的单目视频相机轨迹重定向技术,支持后期自由调整视频的相机位置和角度,生成高质量的新型轨迹视频,广泛应用于沉浸式娱乐、创意视频制作等领域。
IMAGPose:南理工突破性人体生成框架!多姿态适配+细节语义融合,刷新图像生成范式
IMAGPose 是南京理工大学推出的用于人体姿态引导图像生成的统一条件框架,解决了传统方法在姿态引导的人物图像生成中的局限性,支持多场景适应、细节与语义融合、灵活的图像与姿态对齐以及全局与局部一致性。
Migician:清北华科联手放大招!多图像定位大模型问世:3秒锁定跨画面目标,安防监控迎来AI革命!
Migician 是北交大联合清华、华中科大推出的多模态视觉定位模型,支持自由形式的跨图像精确定位、灵活输入形式和多种复杂任务。
StoryWeaver:故事可视化生成模型,快速生成故事绘本,支持处理单角色和多角色的故事可视化任务
StoryWeaver 是厦门大学与网易伏羲联合推出的 AI 模型,通过知识图谱和角色定制技术,实现高质量的故事可视化。
VideoPhy:UCLA 和谷歌联合推出评估视频生成模型物理模拟能力的评估工具,衡量模型生成的视频是否遵循现实世界的物理规则
VideoPhy 是 UCLA 和谷歌联合推出的首个评估视频生成模型物理常识能力的基准测试,旨在衡量模型生成的视频是否遵循现实世界的物理规则。
Meta Motivo:Meta 推出能够控制数字智能体动作的 AI 模型,提升元宇宙互动体验的真实性
Meta Motivo 是 Meta 公司推出的 AI 模型,旨在控制数字智能体的全身动作,提升元宇宙体验的真实性。该模型通过无监督强化学习算法,能够实现零样本学习、行为模仿与生成、多任务泛化等功能,适用于机器人控制、虚拟助手、游戏角色动画等多个应用场景。
ConsisID:北大联合鹏城实验室等机构推出的文本到视频生成模型
ConsisID是由北京大学和鹏城实验室等机构联合推出的文本到视频生成模型,专注于保持视频中人物身份的一致性。该模型采用频率分解技术和免调优的Diffusion Transformer架构,能够在多个评估维度上超越现有技术,推动身份一致性视频生成技术的发展。
EfficientTAM:Meta AI推出的视频对象分割和跟踪模型
EfficientTAM是Meta AI推出的轻量级视频对象分割和跟踪模型,旨在解决SAM 2模型在移动设备上部署时的高计算复杂度问题。该模型采用非层次化Vision Transformer(ViT)作为图像编码器,并引入高效记忆模块,以降低计算复杂度,同时保持高质量的分割结果。EfficientTAM在多个视频分割基准测试中表现出与SAM 2相当的性能,具有更快的处理速度和更少的参数,特别适用于移动设备上的视频对象分割应用。
Find3D:加州理工学院推出的3D部件分割模型
Find3D是由加州理工学院推出的3D部件分割模型,能够根据任意文本查询分割任意对象的任何部分。该模型利用强大的数据引擎自动从互联网上的3D资产生成训练数据,并通过对比训练方法训练出一个可扩展的3D模型。Find3D在多个数据集上表现出色,显著提升了平均交并比(mIoU),并能处理来自iPhone照片和AI生成图像的野外3D构建。
OneDiffusion:无缝支持双向图像合成和理解的开源扩散模型
OneDiffusion 是一个开源的扩散模型,能够无缝支持双向图像合成和理解。它基于统一的训练框架,支持多种任务,如文本到图像生成、条件图像生成和图像理解等。OneDiffusion 通过流匹配框架和序列建模技术,实现了高度的灵活性和可扩展性。
AdaDet检测工具箱:一行代码玩转检测算法
当前,非专业算法人员使用众多检测算法时,仍然会面临诸多挑战: 第一,检测算法包含多种类型,比如通用检测、垂类检测、人脸检测等,如何快速体验? 第二,每个算法类型包含不同的模型结构,有模型可能更注重于精度,有模型更注重于效率,如何选型? 第三,当前下游任务的开发样例较少,如何着手开发? 为了降低检测算法的使用门槛,我们推出了AdaDet检测工具箱。
ART:匿名区域布局+多层透明图像生成技术,生成速度比全注意力方法快12倍以上
ART 是一种新型的多层透明图像生成技术,支持根据全局文本提示和匿名区域布局生成多个独立的透明图层,具有高效的生成机制和强大的透明度处理能力。
MultiBooth:清华联合 Meta 推出多对象的图像生成框架,生成包含多个指定对象的图像
MultiBooth是清华大学联合Meta等机构推出的多概念图像生成方法,支持高效生成高保真度图像,适用于娱乐、广告、教育等多个领域。
CreatiLayout:复旦与字节联合推出布局到图像生成技术,支持高质量图像生成与布局优化
CreatiLayout 是复旦大学与字节跳动联合推出的创新布局到图像生成技术,通过大规模数据集和孪生多模态扩散变换器,实现高质量图像生成与布局优化。
RLCM:康奈尔大学推出文本到图像一致性模型优化框架,支持快速生成与任务特定奖励优化
RLCM 是康奈尔大学推出的基于强化学习的文本到图像生成模型优化框架,支持快速训练与推理,能够根据任务特定奖励函数生成高质量图像。
DynamicControl:腾讯推出动态地条件控制图像生成框架,结合了多模态大语言模型的推理能力和文生图模型的生成能力
DynamicControl 是腾讯优图联合南洋理工等机构推出的动态条件控制图像生成新框架,通过自适应选择不同条件,显著增强了图像生成的可控性。
SNOOPI:创新 AI 文本到图像生成框架,提升单步扩散模型的效率和性能
SNOOPI是一个创新的AI文本到图像生成框架,通过增强单步扩散模型的指导,显著提升模型性能和控制力。该框架包括PG-SB和NASA两种技术,分别用于增强训练稳定性和整合负面提示。SNOOPI在多个评估指标上超越基线模型,尤其在HPSv2得分达到31.08,成为单步扩散模型的新标杆。
MVGenMaster:复旦联合阿里等实验室推出的多视图扩散模型
MVGenMaster是由复旦大学、阿里巴巴达摩院和湖潘实验室联合推出的多视图扩散模型,专注于新视角合成(NVS)任务。该模型通过整合3D先验信息,显著提升了NVS的泛化和3D一致性,并能从单一图像生成多达100个新视图。此外,研究团队还推出了包含160万场景的大型多视图图像数据集MvD-1M,以支持模型的训练和优化。
LEOPARD:腾讯AI Lab西雅图实验室推出的视觉语言模型
LEOPARD是由腾讯AI Lab西雅图实验室推出的视觉语言模型,专为处理含有大量文本的多图像任务设计。该模型通过自适应高分辨率多图像编码模块和大规模多模态指令调优数据集,在多个基准测试中表现卓越,适用于自动化文档理解、教育和学术研究、商业智能和数据分析等多个应用场景。
ViewExtrapolator:南洋理工联合UCAS团队推出的新型视图合成方法
南洋理工大学与UCAS团队联合推出了一种新型视图合成方法——ViewExtrapolator。该方法基于稳定视频扩散(SVD)技术,能够在不进行微调的情况下,高效生成超出训练视图范围的新视角图像,显著减少伪影,提升视觉质量。ViewExtrapolator具有广泛的应用前景,尤其在虚拟现实、3D内容创建、电影制作等领域。
AI给你送年画啦!每一张都是独一无二
阿里云开发者社区携手阿里达摩院、魔搭社区共同推出AI年画娃娃活动,为大家提供了最新的、可体验的生成式AI技术,希望为兔年春节增添一份科技氛围,让年味更加多彩丰富。
ENEL:3D建模革命!上海AI Lab黑科技砍掉编码器,7B模型性能吊打13B巨头
ENEL是由上海AI Lab推出的无编码器3D大型多模态模型,能够在多个3D任务中实现高效语义编码和几何结构理解,如3D对象分类、字幕生成和视觉问答。
VersaGen:生成式 AI 代理,基于 Stable Diffusion 生成图像,专注于控制一至多个视觉主体等生成细节
VersaGen 是一款生成式 AI 代理,专注于文本到图像合成中的视觉控制能力,支持多种视觉控制类型,并通过优化策略提升图像生成质量和用户体验。
Diff-Instruct:指导任意生成模型训练的通用框架,无需额外训练数据即可提升生成质量
Diff-Instruct 是一种从预训练扩散模型中迁移知识的通用框架,通过最小化积分Kullback-Leibler散度,指导其他生成模型的训练,提升生成性能。
LeviTor:蚂蚁集团开源3D目标轨迹控制视频合成技术,能够控制视频中3D物体的运动轨迹
LeviTor是由南京大学、蚂蚁集团等机构联合推出的3D目标轨迹控制视频合成技术,通过结合深度信息和K-means聚类点控制视频中3D物体的轨迹,无需显式的3D轨迹跟踪。
iDP3:斯坦福大学联合多所高校推出的改进型3D视觉运动策略
iDP3是由斯坦福大学联合多所高校推出的改进型3D视觉运动策略,旨在提升人形机器人在多样化环境中的自主操作能力。该策略基于自我中心的3D视觉表征,无需精确相机校准和点云分割,显著提高了机器人在未见过的环境中的实用性和灵活性。
HART:麻省理工学院推出的自回归视觉生成模型
HART(Hybrid Autoregressive Transformer)是麻省理工学院推出的自回归视觉生成模型,能够直接生成1024×1024像素的高分辨率图像,质量媲美扩散模型。HART基于混合Tokenizer技术,显著提升了图像生成质量和计算效率,适用于数字艺术创作、游戏开发、电影和视频制作等多个领域。
Fancy123:华中科技和华南理工推出的3D网格生成技术
Fancy123是由华中科技大学和华南理工大学联合推出的3D网格生成技术,能够从单张图片生成高质量的3D网格。该技术通过即插即用的变形技术,解决了多视图图像的局部不一致性,提高了网格对输入图像的保真度,并确保了高清晰度。Fancy123在定性和定量实验中表现出色,能够无缝集成到现有的单图像到3D的方法中。
modelscope调用的模型如何指定在特定gpu上运行?排除使用CUDA_VISIBLE_DEVICES环境变量
由于个人需要,家里有多张卡,但是我只想通过输入device号的方式,在单卡上运行模型。如果设置环境变量的话我的其他服务将会受影响。
Make-It-Animatable:中科大联合腾讯推出的自动生成即时动画准备资产
Make-It-Animatable是由中国科学技术大学和腾讯联合推出的数据驱动框架,能够在不到一秒内将任何3D人形模型转换为可用于动画的状态。该框架支持多种3D数据格式,并采用从粗到细的表示策略和结构感知建模,显著提升了动画准备的质量和速度。