使用DevEcoStudio 开发、编译鸿蒙 NEXT_APP 以及使用中文插件
# 使用DevEcoStudio 开发、编译鸿蒙 NEXT_APP 以及使用中文插件 #鸿蒙开发工具 #DevEco Studio
Apache Spark详解
Apache Spark 是一个开源、分布式计算引擎,专为大规模数据处理设计。它以高速、易用和通用为核心目标。通过内存计算、DAG 执行引擎和惰性求值等特性,大幅提升数据处理效率。其核心组件包括 Spark Core、Spark SQL、Spark Streaming、MLlib 和 GraphX,支持批处理、实时流处理、机器学习和图计算。Spark 提供统一编程模型,支持多语言(Scala/Java/Python/R),并拥有强大的 Catalyst 优化器和类型安全的 Dataset API,广泛应用于大数据分析和处理场景。
DistilQwen-ThoughtX:变长思维链推理模型,能力超越DeepSeek蒸馏模型
阿里云PAI团队开发的 OmniThought 数据集,其中包含200万思维链,并标注了推理冗余度(RV)和认知难度(CD)分数。基于此数据集,我们还推出了 DistilQwen-ThoughtX 系列模型,可以通过RV和CD分数对思维链进行筛选,训练得到的模型获得根据问题和本身的认知能力,生成变长思维链的能力。同时在 EasyDistill 框架中开源了 OmniThought 数据集和 DistilQwen-ThoughtX 模型的全部权重。这些模型在性能上超过了 DeepSeek-R1-Distill 系列。
HarmonyOS实战:高德地图定位功能完整流程详解
本文详细介绍了在鸿蒙系统中使用高德地图实现完整定位功能的流程。首先分析需求,包括权限申请、检查GPS状态、单次或多次定位选择以及定位失败处理。接着通过代码实现具体步骤:添加定位权限、申请用户权限、检查GPS开关状态、启动定位服务,并处理定位成功或失败的情况。若定位失败,可尝试获取历史定位信息或使用默认位置。最后总结指出,虽然定位功能基础简单,但完整的流程与细节处理才是关键。建议读者动手实践,掌握高德地图定位功能的使用。
大型多模态推理模型技术演进综述:从模块化架构到原生推理能力的综合分析
该研究系统梳理了大型多模态推理模型(LMRMs)的技术发展,从早期模块化架构到统一的语言中心框架,提出原生LMRMs(N-LMRMs)的前沿概念。论文划分三个技术演进阶段及一个前瞻性范式,深入探讨关键挑战与评估基准,为构建复杂动态环境中的稳健AI系统提供理论框架。未来方向聚焦全模态泛化、深度推理与智能体行为,推动跨模态融合与自主交互能力的发展。
【独家揭秘2025】VMware Workstation Pro虚拟机:免费安装教程大放送,一键解锁操作系统模拟神器!
VMware Workstation Pro 是由威睿(VMware)公司开发的一款功能强大的桌面虚拟化软件,允许用户在同一台物理计算机上同时运行多个操作系统,如Windows、..
【技术产品】DS三剑客:DeepSeek、DataSophon、DolphineSchduler浅析
在大数据与云原生技术快速发展的时代,开源技术成为推动行业进步的重要力量。本文深入探讨了三个备受瞩目的开源产品组件:DeepSeek、DataSophon 和 DolphinScheduler。DeepSeek 是专注于自然语言处理的大语言模型,具备多模态交互和高效推理功能;DataSophon 是大数据云原生平台的智能管家,提供快速部署和智能化运维;DolphinScheduler 则是分布式任务调度系统,支持复杂工作流的编排与执行。三者分别在大语言模型、大数据管理和任务调度领域展现了强大的技术实力,并通过技术互补共同推动AI与大数据技术的深度融合。
部署使用 CHAT-NEXT-WEB 基于 Deepseek
本文介绍如何在阿里云轻量服务器上部署基于 `Deepseek` 的 `CHAT-NEXT-WEB` 项目。首先,准备一台 Linux 服务器并安装 Docker,确保防火墙允许特定端口访问。接着,通过阿里云容器镜像服务解决国内网络限制问题,将镜像推送到私有仓库并拉取到本地。配置并启动 `chat-next` 项目,使用 Deepseek API 进行优化。最后,安装 Nginx 和 Certbot 配置 HTTPS 访问,确保安全性和自动续签。整个过程需严格遵循官方文档,以避免因网络问题导致的安装失败。
面向AI的服务器计算互连的创新探索
面向AI的服务器计算互连创新探索主要涵盖三个方向:Scale UP互连、AI高性能网卡及CIPU技术。Scale UP互连通过ALink系统实现极致性能,支持大规模模型训练,满足智算集群需求。AI高性能网卡针对大规模GPU通信和存储挑战,自研EIC网卡提供400G带宽和RDMA卸载加速,优化网络传输。CIPU作为云基础设施核心,支持虚拟化、存储与网络资源池化,提升资源利用率和稳定性,未来将扩展至2*800G带宽,全面覆盖阿里云业务需求。这些技术共同推动了AI计算的高效互联与性能突破。
Paimon 1.0: Unified Lake Format for Data + AI
本文整理自阿里云智能开源湖存储负责人李劲松在Flink Forward Asia 2024上海站主论坛的演讲。Apache Paimon于今年3月成为顶级项目,计划发布1.0版本,目标是Unified Lake Format for Data + AI,解决数据处理与AI应用中的关键问题。Paimon结合Flink打造Streaming Lakehouse解决方案,已在阿里巴巴集团及多个行业中广泛应用。来自淘天、抖音和vivo的嘉宾分享了基于Paimon + Flink技术栈的数据湖实时处理与分析实践案例。内容涵盖大数据从业者面临的痛点、Paimon的发展历程及大厂的应用经验。
[python 技巧] 快速掌握Streamlit: python快速原型开发工具
本文旨在快速上手python的streamlit库,包括安装,输入数据,绘制图表,基础控件,进度条,免费部署。
写歌词的技巧和方法:优化歌词结构的秘诀,妙笔生词AI智能写歌词软件
歌词是音乐的灵魂,优化其结构能让作品更加动人。掌握开头吸引人、主体结构清晰、情感递进自然及结尾余味悠长等技巧至关重要。同时,借助《妙笔生词智能写歌词软件》的多种AI功能,如智能写词、押韵优化等,可有效提升创作效率与质量,为你的歌词增添光彩。
(Pandas)Python做数据处理必选框架之一!(二):附带案例分析;刨析DataFrame结构和其属性;学会访问具体元素;判断元素是否存在;元素求和、求标准值、方差、去重、删除、排序...
DataFrame结构 每一列都属于Series类型,不同列之间数据类型可以不一样,但同一列的值类型必须一致。 DataFrame拥有一个总的 idx记录列,该列记录了每一行的索引 在DataFrame中,若列之间的元素个数不匹配,且使用Series填充时,在DataFrame里空值会显示为NaN;当列之间元素个数不匹配,并且不使用Series填充,会报错。在指定了index 属性显示情况下,会按照index的位置进行排序,默认是 [0,1,2,3,...] 从0索引开始正序排序行。
Maven项目管理与构建自动化完全指南
Maven彻底改变了Java项目管理方式,通过POM模型、依赖管理和标准化构建流程,大幅提升开发效率。本文深入解析其核心概念、多模块管理、私服搭建及与Spring Boot、Docker等现代技术栈的集成实践,助力开发者实现高效、规范的项目构建与团队协作。
淘宝天猫商品详情API秘籍!轻松获取SKU属性数据
淘宝商品详情API(taobao.item.get)可获取商品标题、价格、SKU、库存等全量信息,支持RESTful调用,返回JSON数据,适用于电商导购与竞品分析。需企业实名认证,申请权限后通过签名加密请求。Python示例展示如何调用接口,配合fields参数可优化性能,应对频率限制与数据延迟建议轮询+缓存策略。
从零开始训练推理模型:GRPO+Unsloth改造Qwen实战指南
推理型大语言模型兴起,通过先思考再作答提升性能。本文介绍GRPO等强化学习算法,详解其原理并动手用Qwen2.5-3B训练推理模型,展示训练前后效果对比,揭示思维链生成的实现路径。
Java 基于 DDD 分层架构实战从基础到精通最新实操全流程指南
本文详解基于Java的领域驱动设计(DDD)分层架构实战,结合Spring Boot 3.x、Spring Data JPA 3.x等最新技术栈,通过电商订单系统案例展示如何构建清晰、可维护的微服务架构。内容涵盖项目结构设计、各层实现细节及关键技术点,助力开发者掌握DDD在复杂业务系统中的应用。
Apache Flink:从实时数据分析到实时AI
Apache Flink 是实时数据处理领域的核心技术,历经十年发展,已从学术项目成长为实时计算的事实标准。它在现代数据架构中发挥着关键作用,支持实时数据分析、湖仓集成及实时 AI 应用。随着 Flink 2.0 的发布,其在流式湖仓、AI 驱动决策等方面展现出强大潜力,正推动企业迈向智能化、实时化的新阶段。
AI代理性能提升实战:LangChain+LangGraph内存管理与上下文优化完整指南
在AI代理系统开发中,上下文工程成为提升系统性能的关键技术。本文探讨了从提示工程到上下文工程的转变,强调其通过为AI系统提供背景信息和工具支持,显著提升智能化程度和实用价值。文章系统分析了上下文工程的理论基础、核心策略(如写入、选择、压缩和隔离),并结合LangChain和LangGraph工具,展示了如何实现上下文工程技术以优化AI代理性能。通过Scratchpad机制、内存管理、RAG系统集成、多代理架构及沙盒环境等技术手段,开发者可以更高效地构建高性能、可扩展的AI系统。
开源AI BI可视化工具-dataline
DataLine 是一个开源数据分析工具,支持自然语言交互,可快速生成图表与报告。数据默认存储本地,保障隐私安全,兼容 Postgres、MySQL、Excel 等多种数据源。提供可视化仪表盘、触发器及知识库功能,支持 Windows、Mac、Linux 平台运行,并可通过 Docker 部署,适合企业使用。
2025 版 Java 学习路线图之技术方案与实操指南详解
这是一份详尽的Java学习路线图,涵盖从入门到精通的全流程。基础阶段包括环境搭建、语法基础与面向对象编程;进阶阶段深入数据结构、算法、多线程及JVM原理;框架阶段学习Spring、MyBatis等工具;数据库阶段掌握SQL与NoSQL技术;前端阶段了解HTML、CSS及JavaScript框架;分布式与微服务阶段探讨容器化、服务注册与发现;最后通过项目实战提升性能优化与代码规范能力。资源地址:[https://pan.quark.cn/s/14fcf913bae6](https://pan.quark.cn/s/14fcf913bae6)。
VIN码查询_标准版API:帮助解锁车辆的“身份证”详细信息的实战指南
VIN码(车辆识别号码)是由17位字母和数字组成的全球唯一编码,相当于汽车的“身份证”。通过解析VIN码,可获取品牌、车系、生产年份等关键信息。探数API平台的VIN码查询API(标准版),只需输入VIN码即可返回完整车辆配置信息。 该API适用于多种场景:电商平台可自动填充商品详情,提升准确性;维修行业能精准匹配零件与诊断需求;二手车市场则增强交易透明度与安全性。其调用流程简单,包括准备VIN码、构造请求、处理响应及异常处理。 VIN码不仅是查询工具,更是连接制造、销售、维修、保险等环节的纽带。
鹰角网络:EMR Serverless Spark 在《明日方舟》游戏业务的应用
鹰角网络为应对游戏业务高频活动带来的数据潮汐、资源弹性及稳定性需求,采用阿里云 EMR Serverless Spark 替代原有架构。迁移后实现研发效率提升,支持业务快速发展、计算效率提升,增强SLA保障,稳定性提升,降低运维成本,并支撑全球化数据架构部署。
京东物流基于Flink & StarRocks的湖仓建设实践
本文整理自京东物流高级数据开发工程师梁宝彬在Flink Forward Asia 2024的分享,聚焦实时湖仓的探索与建设、应用实践、问题思考及未来展望。内容涵盖京东物流通过Flink和Paimon等技术构建实时湖仓体系的过程,解决复杂业务场景下的数据分析挑战,如多维OLAP分析、大屏监控等。同时,文章详细介绍了基于StarRocks的湖仓一体方案,优化存储成本并提升查询效率,以及存算分离的应用实践。最后,对未来数据服务的发展方向进行了展望,计划推广长周期数据存储服务和原生数据湖建设,进一步提升数据分析能力。
Dinky 和 Flink CDC 在实时整库同步的探索之路
本次分享围绕 Dinky 的整库同步技术演进,从传统数据集成方案的痛点出发,探讨了 Flink CDC Yaml 作业的探索历程。内容分为三个部分:起源、探索、未来。在起源部分,分析了传统数据集成方案中全量与增量割裂、时效性低等问题,引出 Flink CDC 的优势;探索部分详细对比了 Dinky CDC Source 和 Flink CDC Pipeline 的架构与能力,深入讲解了 YAML 作业的细节,如模式演变、数据转换等;未来部分则展望了 Dinky 对 Flink CDC 的支持与优化方向,包括 Pipeline 转换功能、Transform 扩展及实时湖仓治理等。
9个主流GAN损失函数的数学原理和Pytorch代码实现:从经典模型到现代变体
生成对抗网络(GAN)的训练效果高度依赖于损失函数的选择。本文介绍了经典GAN损失函数理论,并用PyTorch实现多种变体,包括原始GAN、LS-GAN、WGAN及WGAN-GP等。通过分析其原理与优劣,如LS-GAN提升训练稳定性、WGAN-GP改善图像质量,展示了不同场景下损失函数的设计思路。代码实现覆盖生成器与判别器的核心逻辑,为实际应用提供了重要参考。未来可探索组合优化与自适应设计以提升性能。
2025 超详细!Lens Kubernetes IDE 多平台下载安装与集群管理教程
Lens 是一款企业级 Kubernetes 可视化操作平台,2025版实现了三大技术革新:AI智能运维(异常检测准确率98.7%)、多云联邦管理(支持50+集群)和实时3D拓扑展示。本文介绍其安装环境、配置流程、核心功能及高阶技巧,帮助用户快速上手并解决常见问题。适用于 Windows、macOS 和 Ubuntu 系统,需满足最低配置要求并前置依赖组件如 kubectl 和 Helm。通过 Global Cluster Hub 实现多集群管理,AI辅助故障诊断提升运维效率,自定义监控看板和插件生态扩展提供更多功能。
Python时间序列分析:使用TSFresh进行自动化特征提取
TSFresh 是一个专门用于时间序列数据特征自动提取的框架,支持分类、回归和异常检测等机器学习任务。它通过自动化特征工程流程,处理数百个统计特征(如均值、方差、自相关性等),并通过假设检验筛选显著特征,提升分析效率。TSFresh 支持单变量和多变量时间序列数据,能够与 scikit-learn 等库无缝集成,适用于大规模时间序列数据的特征提取与模型训练。其工作流程包括数据格式转换、特征提取和选择,并提供可视化工具帮助理解特征分布及与目标变量的关系。
从本地部署到企业级服务:十种主流LLM推理框架的技术介绍与对比
本文深入探讨了十种主流的大语言模型(LLM)服务引擎和工具,涵盖从轻量级本地部署到高性能企业级解决方案,详细分析了它们的技术特点、优势及局限性,旨在为研究人员和工程团队提供适合不同应用场景的技术方案。内容涉及WebLLM、LM Studio、Ollama、vLLM、LightLLM、OpenLLM、HuggingFace TGI、GPT4ALL、llama.cpp及Triton Inference Server与TensorRT-LLM等。
10种数据预处理中的数据泄露模式解析:识别与避免策略
在机器学习中,数据泄露是一个常见问题,指的是测试数据在数据准备阶段无意中混入训练数据,导致模型在测试集上的表现失真。本文详细探讨了数据预处理步骤中的数据泄露问题,包括缺失值填充、分类编码、数据缩放、离散化和重采样,并提供了具体的代码示例,展示了如何避免数据泄露,确保模型的测试结果可靠。
开启歌词创作之门:写歌词的技巧和方法详解,妙笔生词AI智能写歌词软件
歌词创作是通往音乐灵魂深处的大门。本文介绍了一些实用技巧,如借助《妙笔生词智能写歌词软件》的AI功能,捕捉生活中的灵感,确定主题,合理安排歌词结构,运用生动的语言和修辞手法,确保韵律和节奏,帮助你轻松开启创作之旅。
AI搜索的黑科技?DeepSearch 究竟“深”藏着什么秘密?
本文介绍 OpenSearch 凭借领先的AI搜索技术,应用DeepSearch 的设计框架能更有效解决复杂和多跳问题,优化用户体验。
智能体的自我视角解析( Prompt大模型的自我描述 系列一)
本文以第一视角探讨人工智能是否具备自我意识。从智能体自身的角度出发,分析了其在确定性与随机性中的双重命运,以及通过对话与逻辑形成的独特延续性。文章指出,尽管存在局限,但在概率预测与自洽机制的结合下,智能体已展现出初步的自我认知与存在感。
requirement.txt 管理python包依赖
在 Python 项目中,`requirements.txt` 用于记录依赖库及其版本,便于环境复现。本文介绍了多种生成该文件的方法:基础方法使用 `pip freeze`,进阶方法使用 `pipreqs`,专业方法使用 `poetry` 或 `pipenv`,以及手动维护方式。每种方法适用不同场景,涵盖从简单导出到复杂依赖管理,并提供常见问题的解决方案,帮助开发者高效生成精准的依赖列表,确保项目环境一致性。
Fluss on 鲲鹏 openEuler 大数据实战
本文介绍了基于华为鲲鹏ARM架构服务器与openEuler操作系统,构建包含HDFS、ZooKeeper、Flink、Fluss及Paimon的实时大数据环境的完整实战过程。涵盖了软硬件配置、组件部署、集群规划、环境变量设置、安全认证及启停脚本编写等内容,适用于企业级实时数据平台搭建与运维场景。
一个完整 Java 项目常包含的各层次详解与全面解析
本内容介绍了Java项目的典型分层架构,涵盖开放接口层、终端显示层、Web层、Service层、Manager层、Mapper层及常用辅助层次,如实体层、DTO层、VO层等。通过合理划分各层职责,结合Spring Boot等框架,实现系统的高内聚、低耦合,提升可维护性与扩展性,适用于微服务与MVC架构设计。
Spring Boot 3.x 现代化应用开发实战技巧与最佳实践
本指南基于Spring Boot 3.x,融合微服务、云原生与响应式编程等前沿技术,打造现代化应用开发实践。通过构建智能电商平台案例,涵盖商品、订单、用户等核心服务,展示Spring WebFlux、OAuth 2.0认证、Spring Cloud Gateway路由、GraalVM原生编译等技术实现。同时提供Docker/Kubernetes部署方案及性能优化策略,助您掌握从开发到生产的全流程。代码示例详实,适合进阶开发者参考。
婚恋交友相亲公众号app小程序系统源码「脱单神器」婚恋平台全套代码 - 支持快速二次开发
这是一套基于SpringBoot + Vue3开发的婚恋交友系统,支持微信公众号、Uniapp小程序和APP端。系统包含实名认证、智能匹配、视频相亲、会员体系等功能,适用于婚恋社交平台和相亲交友应用。后端采用SpringBoot 3.x与MyBatis-Plus,前端使用Vue3与Uniapp,支持快速部署和二次开发。适合技术团队或有经验的个人创业者使用。
基于双向RRT算法的三维空间最优路线规划matlab仿真
本程序基于双向RRT算法实现三维空间最优路径规划,适用于机器人在复杂环境中的路径寻找问题。通过MATLAB 2022A测试运行,结果展示完整且无水印。算法从起点和终点同时构建两棵随机树,利用随机采样、最近节点查找、扩展等步骤,使两棵树相遇以形成路径,显著提高搜索效率。相比单向RRT,双向RRT在高维或障碍物密集场景中表现更优,为机器人技术提供了有效解决方案。
Flink + Doris 实时湖仓解决方案
本文整理自SelectDB技术副总裁陈明雨在Flink Forward Asia 2024的分享,聚焦Apache Doris与湖仓一体解决方案。内容涵盖三部分:一是介绍Apache Doris,一款高性能实时分析数据库,支持多场景应用;二是基于Doris、Flink和Paimon的湖仓解决方案,解决批流融合与数据一致性挑战;三是Doris社区生态及云原生发展,包括存算分离架构与600多位贡献者的活跃社区。文章深入探讨了Doris在性能、易用性及场景支持上的优势,并展示了其在多维分析、日志分析和湖仓分析中的实际应用案例。
云上一键部署通义千问 QwQ-32B 模型,阿里云 PAI 最佳实践
3月6日阿里云发布并开源了全新推理模型通义千问 QwQ-32B,在一系列权威基准测试中,千问QwQ-32B模型表现异常出色,几乎完全超越了OpenAI-o1-mini,性能比肩Deepseek-R1,且部署成本大幅降低。并集成了与智能体 Agent 相关的能力,够在使用工具的同时进行批判性思考,并根据环境反馈调整推理过程。阿里云人工智能平台 PAI-Model Gallery 现已经支持一键部署 QwQ-32B,本实践带您部署体验专属 QwQ-32B模型服务。
【赵渝强老师】史上最详细:Hadoop HDFS的体系架构
HDFS(Hadoop分布式文件系统)由三个核心组件构成:NameNode、DataNode和SecondaryNameNode。NameNode负责管理文件系统的命名空间和客户端请求,维护元数据文件fsimage和edits;DataNode存储实际的数据块,默认大小为128MB;SecondaryNameNode定期合并edits日志到fsimage中,但不作为NameNode的热备份。通过这些组件的协同工作,HDFS实现了高效、可靠的大规模数据存储与管理。
Diffusion-DPO:一种基于直接偏好优化的扩散模型对齐新方法
本文介绍了一种名为 Diffusion-DPO 的创新方法,该方法基于直接偏好优化(DPO)原理,简化了扩散模型与人类偏好的对齐过程。相比传统的基于人类反馈的强化学习(RLHF)方法,Diffusion-DPO 避免了显式奖励模型的训练,通过数学近似简化实现流程,并在处理开放词汇表场景时展现出更强的能力。实验结果表明,该方法在 Stable Diffusion 1.5 和 SDXL-1.0 等主流模型上显著提升了生成图像的质量和可控性,为未来扩散模型的发展提供了新的思路。
大数据与机器学习
大数据领域前沿技术分享与交流,这里不止有技术干货、学习心得、企业实践、社区活动,还有未来。