JOIN顺序优化:小表驱动大表的执行原则
在数据库查询优化中,“小表驱动大表”是一种提升SQL查询效率的常用策略。其核心思想是优先处理数据量较小的表,再与大表进行连接操作,从而减少数据扫描量、降低I/O开销并提高内存使用效率。通过显式指定JOIN顺序、使用EXISTS替代IN以及合理创建索引等方式,可以有效实现该原则。例如,在连接部门表(小表)和员工表(大表)时,先处理小表可显著提升查询性能。掌握这一原则有助于编写高效SQL语句,优化数据库整体表现。

MySQL下载安装全攻略!小白也能轻松上手,从此数据库不再难搞!
这是一份详细的MySQL安装与配置教程,适合初学者快速上手。内容涵盖从下载到安装的每一步操作,包括选择版本、设置路径、配置端口及密码等。同时提供基础操作指南,如数据库管理、数据表增删改查、用户权限设置等。还介绍了备份恢复、图形化工具使用和性能优化技巧,帮助用户全面掌握MySQL的使用方法。附带常见问题解决方法,保姆级教学让你无忧入门!
浏览器自动化检测对抗:修改navigator.webdriver属性的底层实现
本文介绍了如何构建一个反检测爬虫以爬取Amazon商品信息。通过使用`undetected-chromedriver`规避自动化检测,修改`navigator.webdriver`属性隐藏痕迹,并结合代理、Cookie和User-Agent技术,实现稳定的数据采集。代码包含浏览器配置、无痕设置、关键词搜索及数据提取等功能,同时提供常见问题解决方法,助你高效应对反爬策略。

深入解析Tiktokenizer:大语言模型中核心分词技术的原理与架构
Tiktokenizer 是一款现代分词工具,旨在高效、智能地将文本转换为机器可处理的离散单元(token)。它不仅超越了传统的空格分割和正则表达式匹配方法,还结合了上下文感知能力,适应复杂语言结构。Tiktokenizer 的核心特性包括自适应 token 分割、高效编码能力和出色的可扩展性,使其适用于从聊天机器人到大规模文本分析等多种应用场景。通过模块化设计,Tiktokenizer 确保了代码的可重用性和维护性,并在分词精度、处理效率和灵活性方面表现出色。此外,它支持多语言处理、表情符号识别和领域特定文本处理,能够应对各种复杂的文本输入需求。

DeepSeek 背后的技术:GRPO,基于群组采样的高效大语言模型强化学习训练方法详解
强化学习(RL)是提升大型语言模型(LLM)推理能力的重要手段,尤其在复杂推理任务中表现突出。DeepSeek团队通过群组相对策略优化(GRPO)方法,在DeepSeek-Math和DeepSeek-R1模型中取得了突破性成果,显著增强了数学推理和问题解决能力。GRPO无需价值网络,采用群组采样和相对优势估计,有效解决了传统RL应用于语言模型时的挑战,提升了训练效率和稳定性。实际应用中,DeepSeek-Math和DeepSeek-R1分别在数学推理和复杂推理任务中展现了卓越性能。未来研究将聚焦于改进优势估计、自适应超参数调整及理论分析,进一步拓展语言模型的能力边界。

数据分布检验利器:通过Q-Q图进行可视化分布诊断、异常检测与预处理优化
Q-Q图(Quantile-Quantile Plot)是一种强大的可视化工具,用于验证数据是否符合特定分布(如正态分布)。通过比较数据和理论分布的分位数,Q-Q图能直观展示两者之间的差异,帮助选择合适的统计方法和机器学习模型。本文介绍了Q-Q图的工作原理、基础代码实现及其在数据预处理、模型验证和金融数据分析中的应用。
官宣开源|阿里云与清华大学共建AI大模型推理项目Mooncake
2024年6月,国内优质大模型应用月之暗面Kimi与清华大学MADSys实验室(Machine Learning, AI, Big Data Systems Lab)联合发布了以 KVCache 为中心的大模型推理架构 Mooncake。
MXFP4量化:如何在80GB GPU上运行1200亿参数的GPT-OSS模型
GPT-OSS通过MXFP4量化技术实现1200亿参数模型在单个80GB GPU上的高效运行,将权重压缩至每参数4.25位,大幅降低内存需求,同时保持高精度和竞争力的基准性能,为大规模模型部署提供了新思路。
面向 Java 开发者:2024 最新技术栈下 Java 与 AI/ML 融合的实操详尽指南
Java与AI/ML融合实践指南:2024技术栈实战 本文提供了Java与AI/ML融合的实操指南,基于2024年最新技术栈(Java 21、DJL 0.27.0、Spring Boot 3.2等)。主要内容包括: 环境配置:详细说明Java 21、Maven依赖和核心技术组件的安装步骤 图像分类服务:通过Spring Boot集成ResNet-50模型,实现REST接口图像分类功能 智能问答系统:展示基于RAG架构的文档处理与向量检索实现 性能优化:利用虚拟线程、GraalVM等新技术提升AI服务性能 文

Apache Flink:从实时数据分析到实时AI
Apache Flink 是实时数据处理领域的核心技术,历经十年发展,已从学术项目成长为实时计算的事实标准。它在现代数据架构中发挥着关键作用,支持实时数据分析、湖仓集成及实时 AI 应用。随着 Flink 2.0 的发布,其在流式湖仓、AI 驱动决策等方面展现出强大潜力,正推动企业迈向智能化、实时化的新阶段。
AI 发展 && MCP
AI发展——计算机视觉、ChatGPT、Sora、DeepSeek、生成式AI。什么是MCP,Prompt、LLM、Function Call、Agent、MCP是什么,各自区别;MCP如何工作,MCP架构、MCP Server工作原理,Cursor如何使用MCP,自定义MCP Server
性能提升 10 倍, DIFY 模式迁移至 Spring AI Alibaba 模式 零改造实现
将 Dify 应用迁移至 Spring AI Alibaba,可兼顾可视化开发效率与代码工程灵活性,显著提升系统性能与扩展能力,适用于复杂 AI 业务场景。
AI重构数据价值链,解码「智能问数」如何赋能医药制造
随着中国医药制造业的蓬勃发展,中国已跃居全球第二大医药市场。随着监管政策的深入实施,市场对医药企业在生产、运营、管理等方面提出了更为严苛的要求。2025年政府工作报告明确提出,持续推进“人工智能+”行动,将数字技术与制造优势、市场优势更好结合起来,支持大模型广泛应用。
国内快递地址解析技术的工作原理详解
随着电商和快递行业快速发展,非结构化地址问题日益突出,如字段混杂、拼写错误等,传统方式难以高效处理。为此,探数平台推出基于NLP和地理信息的快递地址解析API,可将原始地址文本解析为标准结构化字段(如省、市、区、街道等),并支持收件人姓名与电话提取。 技术上,该API采用深度学习模型(如BERT、BiLSTM)进行语义理解,结合地址知识图谱实现纠错与补全。服务支持SaaS调用或私有化部署,性能稳定,适用于各类前端场景。通过地址结构化处理,企业可显著提升订单处理效率,减少配送错误,优化用户体验,助力全链路智能化升级。无论是电商平台还是物流系统,均可从中受益。
深入解析torch.compile:提升PyTorch模型性能、高效解决常见问题
PyTorch 2.0推出的`torch.compile`功能为深度学习模型带来了显著的性能优化能力。本文从实用角度出发,详细介绍了`torch.compile`的核心技巧与应用场景,涵盖模型复杂度评估、可编译组件分析、系统化调试策略及性能优化高级技巧等内容。通过解决图断裂、重编译频繁等问题,并结合分布式训练和NCCL通信优化,开发者可以有效提升日常开发效率与模型性能。文章为PyTorch用户提供了全面的指导,助力充分挖掘`torch.compile`的潜力。

Java程序员必学:JVM架构完全解读
Java 虚拟机(JVM)是 Java 编程的核心,深入理解其架构对开发者意义重大。本文详细解读 JVM 架构,涵盖类加载器子系统、运行时数据区等核心组件,剖析类加载机制,包括加载阶段、双亲委派模型等内容。阐述内存管理原理,介绍垃圾回收算法与常见回收器,并结合案例讲解调优策略。还分享 JVM 性能瓶颈识别与调优方法,分析 Java 语言特性对性能的影响,给出数据结构选择、I/O 操作及并发同步处理的优化技巧,同时探讨 JVM 安全模型与错误处理机制,助力开发者提升编程能力与程序性能。
AI概率学预测足球大小球让球数据分析
在足球数据分析中,AI概率学预测主要用于大小球和让球盘口的分析。大小球预测通过历史数据、机器学习和实时数据动态调整进球数;让球分析则利用Elo评分等评估实力差距,结合盘口数据预测比赛结果。数据来源包括历史比赛、球队和球员信息及外部因素。模型选择涵盖回归、分类和时间序列模型,并通过交叉验证、误差分析进行优化。实际应用包括制定投注策略、风险管理及开发自动化系统。代码示例展示了使用随机森林回归模型预测进球数的过程。
一种小资源情况下RDS数据实时同步StarRocks方案
使用一台4C8 G服务器轻松实现2个MySQL实例中通过负责分库分表规则之后的5000多张表的数据实时同步到StarRocks
什么是公网IP和内网IP
【10月更文挑战第27天】公网IP与内网IP是网络通信中的两个重要概念。公网IP是互联网上的唯一标识,而内网IP仅在局域网内部有效,用于局域网内的设备通信。由于IPv4地址资源有限,通常一个公司或家庭只有一个公网IP,内部设备通过NAT(网络地址转换)技术共享该公网IP访问互联网。这样不仅节省了IP资源,还提高了网络安全性和稳定性。
基础与构建:GraphRAG架构解析及其在知识图谱中的应用
【10月更文挑战第11天】随着数据的不断增长和复杂化,传统的信息检索和生成方法面临着越来越多的挑战。特别是在处理结构化和半结构化数据时,如何高效地提取、理解和生成内容变得尤为重要。近年来,一种名为Graph Retrieval-Augmented Generation (GraphRAG) 的新架构被提出,它结合了图神经网络(GNNs)和预训练语言模型,以提高多模态数据的理解和生成能力。本文将深入探讨GraphRAG的基础原理、架构设计,并通过实际代码示例展示其在知识图谱中的应用。
解决提示词痛点:用AI智能体自动检测矛盾、优化格式的完整方案
本文介绍了一种基于用户意图的提示词优化系统,利用多智能体架构实现自动化优化,提升少样本学习场景下的提示词质量与模型匹配度。系统通过专用智能体协同工作,识别并修复逻辑矛盾、格式不清及示例不一致等问题,结合Pydantic结构化数据模型与OpenAI评估框架,实现高效、可扩展的提示词优化流程。该方案显著减少了人工干预,增强了系统效率与输出一致性,适用于复杂研究任务与深度AI应用。
Apache Iceberg数据湖高级特性及性能调优
性能调优涵盖索引优化、排序策略与元数据管理。通过布隆过滤器、位图索引等提升查询效率,结合文件内/间排序优化I/O与压缩,辅以Z-Order实现多维数据聚集。同时,合理配置元数据缓存与清单合并,加速查询规划。适用于点查、全表扫描及高并发写入场景,显著提升系统性能与资源利用率。
淘宝天猫店铺订单列表、订单详情、订单物流 API 接口全攻略
淘宝天猫订单API接口简介:支持订单列表查询、订单详情获取及物流轨迹追踪功能。通过taobao.trades.sold.get等接口批量查询订单,按状态/时间筛选;taobao.trade.fullinfo.get获取订单详细信息;taobao.logistics.trade.trackget实时跟踪物流状态。开发者需注册账号、申请权限,并使用编程语言调用API,传递必要参数(如App Key、订单ID),处理JSON返回数据。适用于多场景订单管理与物流同步。
人工智能平台 PAI DistilQwen2.5-DS3-0324发布:知识蒸馏+快思考=更高效解决推理难题
DistilQwen 系列是阿里云人工智能平台 PAI 推出的蒸馏语言模型系列,包括DistilQwen2、DistilQwen2.5、DistilQwen2.5-R1 等。DistilQwen2.5-DS3-0324 系列模型是基于 DeepSeek-V3-0324 通过知识蒸馏技术并引入快思考策略构建,显著提升推理速度,使得在资源受限的设备和边缘计算场景中,模型能够高效执行复杂任务。实验显示,DistilQwen2.5-DS3-0324 系列中的模型在多个基准测试中表现突出,其32B模型效果接近参数量接近其10倍的闭源大模型。
【赵渝强老师】史上最详细:Hadoop HDFS的体系架构
HDFS(Hadoop分布式文件系统)由三个核心组件构成:NameNode、DataNode和SecondaryNameNode。NameNode负责管理文件系统的命名空间和客户端请求,维护元数据文件fsimage和edits;DataNode存储实际的数据块,默认大小为128MB;SecondaryNameNode定期合并edits日志到fsimage中,但不作为NameNode的热备份。通过这些组件的协同工作,HDFS实现了高效、可靠的大规模数据存储与管理。
云上玩转DeepSeek系列之四:DeepSeek R1 蒸馏和微调训练最佳实践
本文将为您带来“DeepSeek R1+Qwen 大模型蒸馏和微调训练”最佳实践。阿里云 PAI 平台提供了围绕 DeepSeek 模型的最佳实践,涵盖快速部署、应用搭建、蒸馏和微调等环节,帮助开发者高效利用计算资源,使用 Model Gallery 功能,轻松完成部署与微调任务。
深入理解 Flink 中的 State
Flink 的 State(状态)是其四大核心之一,为流处理和批处理任务提供强大支持。本文深入探讨 Flink 中的状态管理,涵盖 State 在 HDFS 中的存储格式、存在形式(如 ValueState、ListState 等)、使用方法、过期时间 TTL 和清除策略,并介绍 Table API 和 SQL 模块中的状态管理。通过实际案例,帮助读者理解如何在电商订单处理、实时日志统计等场景中有效利用状态管理功能。
代理IP故障排查技巧汇总及实战经验分享
在信息化时代,互联网不可或缺。使用HTTP动态代理IP时,快速排查故障至关重要。主要步骤包括:1. 检查代理IP有效性(Ping测试、HTTP请求测试);2. 监控连接速度(延迟和带宽测试);3. 分析错误信息(HTTP状态码、日志);4. 检查代理设置(配置文件、协议支持);5. 使用调试工具(Wireshark、浏览器开发者工具);6. 咨询服务提供商;7. 检查网络环境(防火墙、ISP限制);8. 逐步排查并记录变化。这些技巧能有效找出并解决问题。
Github上的十大RAG(信息检索增强生成)框架
信息检索增强生成(RAG)是一种结合了检索系统和生成模型优势的技术,能够显著提升大型语言模型的性能。RAG通过从外部知识库中检索相关信息,增强模型的输入,从而生成更加准确、符合上下文、实时更新的响应。GitHub上涌现出多个开源RAG框架,如Haystack、RAGFlow、txtai等,每个框架都有独特的功能和特性,适用于不同的应用场景。这些框架不仅提高了模型的准确性和可靠性,还增强了过程的透明度和可解释性。
软件复杂度量化:McCabe度量法及其环路复杂度的计算方法
McCabe度量法(McCabe's Cyclomatic Complexity)是一种经典的方法,用于度量软件程序的复杂度。通过计算程序中独立路径的数量,帮助开发人员评估代码的维护难度和测试覆盖率。本文详细介绍了McCabe度量法的原理、计算方法及其在实际应用中的作用。
Selenium中定位元素的9种方法
在Selenium中,定位页面元素是自动化测试和网页爬虫的基础。常用的9种元素定位方法包括:ID、Name、Class Name、Tag Name、CSS Selector、XPath、Link Text、Partial Link Text,以及XPath和CSS选择器的组合使用。每种方法各有优劣,建议根据页面的具体情况和元素的属性选择最合适的方法,并使用显式等待确保元素可用。

信息论、机器学习的核心概念:熵、KL散度、JS散度和Renyi散度的深度解析及应用
在信息论、机器学习和统计学领域中,KL散度(Kullback-Leibler散度)是量化概率分布差异的关键概念。本文深入探讨了KL散度及其相关概念,包括Jensen-Shannon散度和Renyi散度。KL散度用于衡量两个概率分布之间的差异,而Jensen-Shannon散度则提供了一种对称的度量方式。Renyi散度通过可调参数α,提供了更灵活的散度度量。这些概念不仅在理论研究中至关重要,在实际应用中也广泛用于数据压缩、变分自编码器、强化学习等领域。通过分析电子商务中的数据漂移实例,展示了这些散度指标在捕捉数据分布变化方面的独特优势,为企业提供了数据驱动的决策支持。
揭秘数据治理:七步工作法&十大准则全解析
数据治理的“七步工作法”与“十大准则”为企业构建科学、系统、高效的数据治理体系提供了重要的指导和借鉴。企业应结合自身实际情况,灵活运用这些方法和准则,充分挖掘数据潜能,赋能业务创新,实现数字化转型的稳健推进。
大数据的应用场景
大数据在众多行业中的应用场景广泛,涵盖金融、零售、医疗保健、交通物流、制造、能源、政府公共服务及教育等领域。在金融行业,大数据用于风险评估、精准营销、反欺诈以及决策支持;零售业则应用于商品推荐、供应链管理和门店运营优化等;医疗保健领域利用大数据进行疾病预测、辅助诊断和医疗质量评估;交通物流业通过大数据优化物流配送、交通管理和运输安全;制造业则在生产过程优化、设备维护和供应链协同方面受益;能源行业运用大数据提升智能电网管理和能源勘探效率;政府和公共服务部门借助大数据改善城市管理、政务服务及公共安全;教育行业通过大数据实现个性化学习和资源优化配置;体育娱乐业则利用大数据提升赛事分析和娱乐制作水平。
1688图片搜索API秘籍!轻松获取相似商品数据
1688图片搜索API基于图像识别技术,支持通过上传商品图片搜索同款或相似商品,适用于电商选品、供应链管理等场景。提供多种搜索模式与结果过滤条件,支持Python等开发语言,提升采购效率。
利用 Spring WebFlux 技术打造高效非阻塞 API 的完整开发方案与实践技巧
本文介绍了如何使用Spring WebFlux构建高效、可扩展的非阻塞API,涵盖响应式编程核心概念、技术方案设计及具体实现示例,适用于高并发场景下的API开发。
云上AI推理平台全掌握 (4):大模型分发加速
为应对大模型服务突发流量场景,阿里云人工智能平台 PAI 推理服务 PAI-EAS 提供本地目录内存缓存(Memory Cache)的大模型分发加速功能,有效解决大量请求接入情况下的推理延迟。PAI-EAS 大模型分发加速功能,零代码即可轻松完成配置。
Dataphin数据服务API行级权限管控解决方案 ——构建企业级数据安全的精细化管控体系
Dataphin数据服务推出行级权限管控功能,解决传统权限管理中用户权限分散、管控复杂等问题。支持直连与代理双模式访问,实现API与SQL权限统一管理,满足金融、零售、医疗等行业对数据访问的精细化控制需求。通过动态权限决策引擎和自动化继承体系,确保数据安全且提升应用开发效率。
聚合电商API:一键连接多平台数据
聚合电商API接口平台整合淘宝、天猫、京东等多平台API,提供一站式数据服务。核心功能包括数据整合、多平台搜索、详细解析与定制化服务,助力商家高效管理订单、优化商品推荐及支持数据驱动决策。平台注重智能化、个性化与全渠道发展,保障数据安全,推动业务增长。

Dataphin测评:企业级数据中台的「智能中枢」与「治理引擎」
Dataphin是一款智能数据建设与治理平台,基于阿里巴巴OneData方法论,提供从数据采集、建模研发到资产治理、数据服务的全链路智能化能力。它帮助企业解决数据口径混乱、质量参差等问题,构建标准化、资产化、服务化的数据中台体系。本文通过详细的操作步骤,介绍了如何使用Dataphin进行离线数仓搭建,包括规划数仓、数据集成、数据处理、运维补数据及验证数据等环节。尽管平台功能强大,但在部署文档更新、新手友好度及基础功能完善性方面仍有提升空间。未来可引入SQL智能纠错、自然语言生成报告等功能,进一步增强用户体验与数据治理效率。

大数据与机器学习
大数据领域前沿技术分享与交流,这里不止有技术干货、学习心得、企业实践、社区活动,还有未来。