阿里云PAI大模型RAG对话系统最佳实践
本文为大模型RAG对话系统最佳实践,旨在指引AI开发人员如何有效地结合LLM大语言模型的推理能力和外部知识库检索增强技术,从而显著提升对话系统的性能,使其能更加灵活地返回用户查询的内容。适用于问答、摘要生成和其他依赖外部知识的自然语言处理任务。通过该实践,您可以掌握构建一个大模型RAG对话系统的完整开发链路。
大数据数仓建模基础理论【维度表、事实表、数仓分层及示例】
数据仓库建模是组织和设计数据以支持数据分析的过程,包括ER模型和维度建模。ER模型通过实体和关系描述数据结构,遵循三范式减少冗余。维度建模,特别是Kimball方法,用于数据仓库设计,便于分析和报告。事实表存储业务度量,如销售数据,分为累积、快照、事务和周期性快照类型。维度表提供描述性信息,如时间、产品、地点和客户详情。数仓通常分层为ODS(源数据)、DWD(明细数据)、DIM(公共维度)、DWS(数据汇总)和ADS(应用数据),以优化数据管理、质量、查询性能和适应性。
如何从0部署一个大模型RAG应用
本文介绍了如何从零开始部署一套RAG应用,并将其集成到移动端,如钉钉群聊中。应用场景包括客服系统、智能助手、教育辅导和医疗咨询等。通过阿里云PAI和AppFlow,您可以轻松部署大模型RAG应用,并实现智能化的问答服务。具体步骤包括准备向量检索库、训练私有模型、部署RAG对话应用、创建钉钉应用及配置机器人等。
数据治理:如何制定数据标准与规范
在当今这个数据驱动的时代,数据已成为企业最宝贵的资产之一。然而,随着数据量的爆炸性增长和数据来源的多样化,如何有效地管理和利用这些数据成为了企业面临的重大挑战。数据治理作为确保数据质量、安全性、合规性和可访问性的关键过程,其核心在于制定并执行一套科学、合理的数据标准与规范。本文将探讨如何制定数据标准与规范,以推动企业的数据治理实践。
大数据的应用场景
大数据在众多行业中的应用场景广泛,涵盖金融、零售、医疗保健、交通物流、制造、能源、政府公共服务及教育等领域。在金融行业,大数据用于风险评估、精准营销、反欺诈以及决策支持;零售业则应用于商品推荐、供应链管理和门店运营优化等;医疗保健领域利用大数据进行疾病预测、辅助诊断和医疗质量评估;交通物流业通过大数据优化物流配送、交通管理和运输安全;制造业则在生产过程优化、设备维护和供应链协同方面受益;能源行业运用大数据提升智能电网管理和能源勘探效率;政府和公共服务部门借助大数据改善城市管理、政务服务及公共安全;教育行业通过大数据实现个性化学习和资源优化配置;体育娱乐业则利用大数据提升赛事分析和娱乐制作水平。
大数据隐私保护策略:加密、脱敏与访问控制实践
【4月更文挑战第9天】本文探讨了大数据隐私保护的三大策略:数据加密、数据脱敏和访问控制。数据加密通过加密技术保护静态和传输中的数据,密钥管理确保密钥安全;数据脱敏通过替换、遮蔽和泛化方法降低敏感信息的敏感度;访问控制则通过用户身份验证和权限设置限制数据访问。示例代码展示了数据库、文件系统和API访问控制的实施方式,强调了在实际应用中需结合业务场景和平台特性定制部署。
阿里巴巴的通义千问大模型
阿里巴巴通义千问是基于Transformer的大型语言模型,预训练于多样化数据集,支持18亿至720亿参数规模。在多模态英文任务中表现出色,且具备多语言对话及图片文本识别能力。可应用于搜索引擎、问答系统和对话交互,提供智能体验。然而,模型在逻辑题和指令理解上存在不足,需在特定领域进行优化。
解决“Unable to start embedded Tomcat“错误的完整指南
通过逐步检查以上问题,你应该能够解决 "Unable to start embedded Tomcat" 错误,并使Tomcat成功启动。
软件复杂度量化:McCabe度量法及其环路复杂度的计算方法
McCabe度量法(McCabe's Cyclomatic Complexity)是一种经典的方法,用于度量软件程序的复杂度。通过计算程序中独立路径的数量,帮助开发人员评估代码的维护难度和测试覆盖率。本文详细介绍了McCabe度量法的原理、计算方法及其在实际应用中的作用。
云上智能供应链:重塑物流与供应链管理的未来图景
云上智能供应链作为供应链管理领域的创新实践,正以其独特的优势和潜力引领着供应链管理的未来发展。通过数字化、智能化和集成化的手段,云上智能供应链不仅提升了供应链的整体效能和竞争力,还为企业带来了更多的商业价值和市场机遇。我们有理由相信,在未来的日子里,云上智能供应链将成为推动企业转型升级和实现可持续发展的重要力量。
Flume 快速入门【概述、安装、拦截器】
Apache Flume 是一个开源的数据采集工具,用于从各种数据源(如日志、网络数据、消息队列)收集大规模数据,并将其传输和加载到数据存储系统(如 HDFS、HBase、Hive)。Flume 由数据源(Source)、通道(Channel)、拦截器(Interceptor)和接收器(Sink)组成,支持灵活配置以适应不同的数据流处理需求。安装 Flume 包括解压软件包、配置环境变量和调整日志及内存设置。配置文件定义数据源、通道、拦截器和接收器,拦截器允许预处理数据。Flume 适用于构建数据管道,整合分散数据到中心存储系统,便于分析和报告。
flink forward asia 2023主论坛
Flink Forward 是由 Apache 官方授权的 Apache Flink 社区官方技术大会,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线厂商围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。
大数据在供应链管理中的具体应用案例
以下是大数据在供应链管理中的具体应用案例:沃尔玛通过整合内外部数据进行需求预测,提前调配应急物资;亚马逊利用大数据优化库存管理,提高周转率并降低成本;DHL通过传感器收集数据优化物流路线,提升运输效率。大数据的优势在于提高需求预测准确性、优化库存管理、提升物流效率、增强供应商管理和提高供应链可视性,从而实现全方位的供应链优化。
YOLO11-pose关键点检测:训练实战篇 | 自己数据集从labelme标注到生成yolo格式的关键点数据以及训练教程
本文介绍了如何将个人数据集转换为YOLO11-pose所需的数据格式,并详细讲解了手部关键点检测的训练过程。内容涵盖数据集标注、格式转换、配置文件修改及训练参数设置,最终展示了训练结果和预测效果。适用于需要进行关键点检测的研究人员和开发者。
Flink Forward Asia 2024 上海站|探索实时计算新边界
Flink Forward Asia 2024 即将盛大开幕!11 月 29 至 30 日在上海举行,大会聚焦 Apache Flink 技术演进与未来规划,涵盖流式湖仓、流批一体、Data+AI 融合等前沿话题,提供近百场专业演讲。立即报名,共襄盛举!官网:https://asia.flink-forward.org/shanghai-2024/
AI在各行业的具体应用与未来展望
人工智能(Artificial Intelligence, AI)作为一项颠覆性技术,正在逐步改变我们的生活和工作方式。从语音助手到自动驾驶汽车,AI的应用已经深入到各个领域。本文将详细探讨AI在不同行业中的具体应用,以及未来可能的发展方向。
使用Python进行数据预处理与清洗的最佳实践
本文探讨了Python在数据预处理和清洗中的关键作用。预处理包括数据收集、整合、探索、转换和标准化,而清洗则涉及缺失值、重复值、异常值的处理及数据格式转换。文中提供了使用pandas库进行数据读取、缺失值(如用平均值填充)和重复值处理、异常值检测(如IQR法则)以及数据转换(如min-max缩放)的代码示例。此外,还讲解了文本数据清洗的基本步骤,包括去除标点、转换为小写和停用词移除。整体上,文章旨在帮助读者掌握数据预处理和清洗的最佳实践,以提高数据分析的准确性和效率。
大模型进阶微调篇(三):微调GPT2大模型实战
本文详细介绍了如何在普通个人电脑上微调GPT2大模型,包括环境配置、代码实现和技术要点。通过合理设置训练参数和优化代码,即使在无独显的设备上也能完成微调,耗时约14小时。文章还涵盖了GPT-2的简介、数据集处理、自定义进度条回调等内容,适合初学者参考。
确保数据安全与隐私保护的数据治理最佳实践
【8月更文第13天】随着数据成为企业最重要的资产之一,数据安全和隐私保护变得至关重要。本文将探讨数据治理中的一些最佳实践,并提供具体的代码示例来说明如何实施这些策略。
【HBase入门与实战】一文搞懂HBase!
该文档介绍了HBase,一种高吞吐量的NoSQL数据库,适合处理大规模数据。HBase具备快速读写、列式存储和天然支持集群部署的特点,常用于高并发场景。NoSQL与关系型数据库的主要区别在于数据模型、查询语言和可伸缩性。HBase的物理架构包括Client、Zookeeper、HMaster和RegionServer,其中RegionServer管理数据存储。HBase的读写流程利用MemStore和Bloom Filter提高效率。此外,文档还提到了HBase的应用,如时间序列数据、消息传递和内容服务。
前端大模型入门(三):编码(Tokenizer)和嵌入(Embedding)解析 - llm的输入
本文介绍了大规模语言模型(LLM)中的两个核心概念:Tokenizer和Embedding。Tokenizer将文本转换为模型可处理的数字ID,而Embedding则将这些ID转化为能捕捉语义关系的稠密向量。文章通过具体示例和代码展示了两者的实现方法,帮助读者理解其基本原理和应用场景。
如何为Kafka加上账号密码(一)
一直以来,我们公司内网的Kafka集群都是在裸奔,只要知道端口号,任何人都能连上集群操作一番。直到有个主题莫名消失,才引起我们的警觉,是时候该考虑为它添加一套认证策略了。
推荐场景GPU优化的探索与实践:CUDA Graph与多流并行的比较与分析
RTP 系统(即 Rank Service),是一个面向搜索和推荐的 ranking 需求,支持多种模型的在线 inference 服务,是阿里智能引擎团队沉淀多年的技术产品。今年,团队在推荐场景的GPU性能优化上又做了新尝试——在RTP上集成了Multi Stream,改变了TensorFlow的单流机制,让多流的执行并行,作为增加GPU并行度的另一种选择。本文详细介绍与比较了CUDA Graph与多流并行这两个方案,以及团队的实践成果与心得。
小红书 API 接口使用指南:笔记详情数据接口的接入与使用
小红书是一款广受喜爱的生活方式分享社交平台,涵盖旅行、美食等领域。其API允许开发者批量获取笔记内容、图片链接及用户互动数据,助力内容分析与营销策略优化。要使用API,需先注册开发者账号并通过认证获取密钥;随后依据官方文档构建与发送HTTP请求,最后处理JSON格式响应数据。整个过程中,请务必遵循平台使用条款,尊重用户隐私权。
Python实现多元线性回归模型(statsmodels OLS算法)项目实战
Python实现多元线性回归模型(statsmodels OLS算法)项目实战
2024年的选择:为什么Go可能是理想的后端语言
【4月更文挑战第27天】Go语言在2024年成为后端开发的热门选择,其简洁设计、内置并发原语和强大工具链备受青睐。文章探讨了Go的设计哲学,如静态类型、垃圾回收和CSP并发模型,并介绍了使用Gin和Echo框架构建Web服务。Go的并发通过goroutines和channels实现,静态类型确保代码稳定性和安全性,快速编译速度利于迭代。Go广泛应用在云计算、微服务等领域,拥有丰富的生态系统和活跃社区,适合作为应对未来技术趋势的语言。
Selenium中定位元素的9种方法
在Selenium中,定位页面元素是自动化测试和网页爬虫的基础。常用的9种元素定位方法包括:ID、Name、Class Name、Tag Name、CSS Selector、XPath、Link Text、Partial Link Text,以及XPath和CSS选择器的组合使用。每种方法各有优劣,建议根据页面的具体情况和元素的属性选择最合适的方法,并使用显式等待确保元素可用。
Linux(CentOS7.5) 安装部署 Python3.6(超详细!包含 Yum 源配置!)
该指南介绍了在Linux系统中配置Yum源和安装Python3的步骤。首先,通过`yum install`和`wget`命令更新和备份Yum源,并从阿里云获取CentOS和EPEL的repo文件。接着,清理和更新Yum缓存。然后,下载Python3源代码包,推荐使用阿里云镜像加速。解压后,安装必要的依赖,如gcc。在配置和编译Python3时,可能需要解决缺少C编译器的问题。完成安装后,创建Python3和pip3的软链接,并更新环境变量。最后,验证Python3安装成功,并可选地升级pip和配置pip源以提高包下载速度。
一文搞懂Kafka中的listeners配置策略
1. listeners中的plaintext controller external是什么意思? 2. Kraft模式下controller和broker有何区别? 3. 集群节点之间同步什么数据,通过哪个端口,是否可以自定义端口? 4. 客户端通过哪个端口连接到kafka,通过9092连接的是什么,broker还是controller? 5. 为controller配置了单独的端口有什么用? 6. control.plane.listener.name与controller.listener.names有何区别?
Java“ArrayIndexOutOfBoundsException”解决
Java中的“ArrayIndexOutOfBoundsException”异常通常发生在尝试访问数组的无效索引时。解决方法包括:检查数组边界,确保索引值在有效范围内;使用循环时注意终止条件;对用户输入进行验证。通过这些措施可以有效避免该异常。
PyTorch 与边缘计算:将深度学习模型部署到嵌入式设备
【8月更文第29天】随着物联网技术的发展,越来越多的数据处理任务开始在边缘设备上执行,以减少网络延迟、降低带宽成本并提高隐私保护水平。PyTorch 是一个广泛使用的深度学习框架,它不仅支持高效的模型训练,还提供了多种工具帮助开发者将模型部署到边缘设备。本文将探讨如何将PyTorch模型高效地部署到嵌入式设备上,并通过一个具体的示例来展示整个流程。
Ubuntu 20.04 卸载与安装 MySQL 5.7 详细教程
该文档提供了在Ubuntu上卸载和安装MySQL 5.7的步骤。首先,通过`apt`命令卸载所有MySQL相关软件包及配置。然后,下载特定版本(5.7.32)的MySQL安装包,解压并安装所需依赖。接着,按照特定顺序安装解压后的deb包,并在安装过程中设置root用户的密码。安装完成后,启动MySQL服务,连接数据库并验证。最后,提到了开启GTID和二进制日志的配置方法。
RAG系统的7个检索指标:信息检索任务准确性评估指南
大型语言模型(LLMs)在生成式AI领域备受关注,但其知识局限性和幻觉问题仍具挑战。检索增强生成(RAG)通过引入外部知识和上下文,有效解决了这些问题,并成为2024年最具影响力的AI技术之一。RAG评估需超越简单的实现方式,建立有效的性能度量标准。本文重点讨论了七个核心检索指标,包括准确率、精确率、召回率、F1分数、平均倒数排名(MRR)、平均精确率均值(MAP)和归一化折损累积增益(nDCG),为评估和优化RAG系统提供了重要依据。这些指标不仅在RAG中发挥作用,还广泛应用于搜索引擎、电子商务、推荐系统等领域。
NameNode 故障无法重新启动解决方法
当NameNode进程挂掉时,若无数据丢失,可直接使用`hdfs --daemon start namenode`重启。但若数据丢失,需从SecondaryNameNode恢复。首先查看启动日志,确认因数据丢失导致的未启动成功问题。接着,将SecondaryNameNode的备份数据拷贝至NameNode的数据存储目录,目录路径在`core-site.xml`中设定。进入NameNode节点,使用`scp`命令从SecondaryNameNode复制数据后,重启NameNode进程,故障即可修复。
性能调优指南:针对 DataLoader 的高级配置与优化
【8月更文第29天】在深度学习项目中,数据加载和预处理通常是瓶颈之一,特别是在处理大规模数据集时。PyTorch 的 `DataLoader` 提供了丰富的功能来加速这一过程,但默认设置往往不能满足所有场景下的最优性能。本文将介绍如何对 `DataLoader` 进行高级配置和优化,以提高数据加载速度,从而加快整体训练流程。
异步数据加载技巧:实现 DataLoader 的最佳实践
【8月更文第29天】在深度学习中,数据加载是整个训练流程中的一个关键步骤。为了最大化硬件资源的利用率并提高训练效率,使用高效的数据加载策略变得尤为重要。本文将探讨如何通过异步加载和多线程/多进程技术来优化 DataLoader 的性能。
ONNX 与量化:提高模型效率
【8月更文第27天】随着人工智能技术的广泛应用,模型部署变得越来越重要。为了在资源受限的设备上运行复杂的机器学习模型,模型量化技术成为了一种有效的手段。Open Neural Network Exchange (ONNX) 作为一种开放格式,支持在不同框架之间交换训练好的模型,同时也支持模型量化。本文将探讨如何结合 ONNX 和模型量化技术来提高模型的效率,减少模型大小并加快推理速度。
通义千问开源模型在PAI灵骏的最佳实践
本文将展示如何基于阿里云PAI灵骏智算服务,在通义千问开源模型之上进行高效分布式继续预训练、指令微调、模型离线推理验证以及在线服务部署。
GPU 加速与 PyTorch:最大化硬件性能提升训练速度
【8月更文第29天】GPU(图形处理单元)因其并行计算能力而成为深度学习领域的重要组成部分。本文将介绍如何利用PyTorch来高效地利用GPU进行深度学习模型的训练,从而最大化训练速度。我们将讨论如何配置环境、选择合适的硬件、编写高效的代码以及利用高级特性来提高性能。
目标检测算法:从理论到实践的深度探索
【7月更文第18天】目标检测,作为计算机视觉领域的核心任务之一,旨在识别图像或视频中特定对象的位置及其类别。这一技术在自动驾驶、视频监控、医疗影像分析等多个领域发挥着至关重要的作用。本文将深入浅出地介绍目标检测的基本概念、主流算法,并通过一个实际的代码示例,带您领略YOLOv5这一高效目标检测模型的魅力。
Flink CDC:基于 Apache Flink 的流式数据集成框架
本文整理自阿里云 Flink SQL 团队研发工程师于喜千(yux)在 SECon 全球软件工程技术大会中数据集成专场沙龙的分享。
三种常见的加密算法:MD5、对称加密与非对称加密的比较与应用
网络安全聚焦加密算法:MD5用于数据完整性校验,易受碰撞攻击;对称加密如AES快速高效,密钥管理关键;非对称加密如RSA提供身份验证,速度慢但安全。三种算法各有所长,适用场景各异,安全与效率需权衡。【6月更文挑战第17天】
大数据时代的数据质量与数据治理策略
在大数据时代,高质量数据对驱动企业决策和创新至关重要。然而,数据量的爆炸式增长带来了数据质量挑战,如准确性、完整性和时效性问题。本文探讨了数据质量的定义、重要性及评估方法,并提出数据治理策略,包括建立治理体系、数据质量管理流程和生命周期管理。通过使用Apache Nifi等工具进行数据质量监控和问题修复,结合元数据管理和数据集成工具,企业可以提升数据质量,释放数据价值。数据治理需要全员参与和持续优化,以应对数据质量挑战并推动企业发展。
用DataV Atlas探索杭州美食
试用DataV Atlas可视化工具,打造出属于你的美食地图!DataV可视分析地图是阿里云面向地理空间数据的专业分析工具,能够帮助用户快速构建自己的地理分析地图,挖掘时空数据的价值,并支持商业决策和科学研究等领域的应用。 本教程基于一份杭州的美食分布空间数据,引导用户一步一步熟悉产品的功能界面、SQL分析、可视化设置、作品分享等基础功能。
大数据与机器学习
大数据领域前沿技术分享与交流,这里不止有技术干货、学习心得、企业实践、社区活动,还有未来。