通过阿里云Milvus与通义千问VL大模型,快速实现多模态搜索
阿里云向量检索服务Milvus版是一款全托管向量检索引擎,并确保与开源Milvus的完全兼容性,支持无缝迁移。它在开源版本的基础上增强了可扩展性,能提供大规模AI向量数据的相似性检索服务。凭借其开箱即用的特性、灵活的扩展能力和全链路监控告警,Milvus云服务成为多样化AI应用场景的理想选择,包括多模态搜索、检索增强生成(RAG)、搜索推荐、内容风险识别等。您还可以利用开源的Attu工具进行可视化操作,进一步促进应用的快速开发和部署。
大模型落地的关键:如何用 RAG 打造更智能的 AI 搜索——阿里云 AI 搜索开放平台
本文分享了大模型落地的关键:如何用阿里云 AI 搜索开放平台 打造更智能的 AI 搜索。
计算机视觉五大技术——深度学习在图像处理中的应用
深度学习利用多层神经网络实现人工智能,计算机视觉是其重要应用之一。图像分类通过卷积神经网络(CNN)判断图片类别,如“猫”或“狗”。目标检测不仅识别物体,还确定其位置,R-CNN系列模型逐步优化检测速度与精度。语义分割对图像每个像素分类,FCN开创像素级分类范式,DeepLab等进一步提升细节表现。实例分割结合目标检测与语义分割,Mask R-CNN实现精准实例区分。关键点检测用于人体姿态估计、人脸特征识别等,OpenPose和HRNet等技术推动该领域发展。这些方法在效率与准确性上不断进步,广泛应用于实际场景。
DAPO: 面向开源大语言模型的解耦裁剪与动态采样策略优化系统
DAPO(Decoupled Clip and Dynamic Sampling Policy Optimization)是由字节跳动提出的一种突破性的开源大语言模型强化学习系统。基于Qwen2.5-32B基础模型,DAPO在AIME 2024测试中以50分的优异成绩超越了现有最佳模型,
AI大模型运维开发探索第四篇:智能体分阶段演进路线
本文探讨了智能体工程的演进历程,从最初的思维链(智能体1.0)到实例化智能体(智能体2.0),再到结构化智能体(智能体3.0),最终展望了自演进智能体(智能体4.0)。文章详细分析了各阶段遇到的问题及解决策略,如工具调用可靠性、推理能力提升等,并引入了大模型中间件的概念以优化业务平台与工具间的协调。此外,文中还提到了RunnableHub开源项目,为读者提供了实际落地的参考方案。通过不断迭代,智能体逐渐具备更强的适应性和解决问题的能力,展现了未来AI发展的潜力。
如何用大模型评估大模型——PAI-Judge裁判员大语言模型的实现简介
阿里云人工智能平台 PAI 推出 PAI-Judge 裁判员大模型,为用户构建符合应用场景的多维度、细粒度的评测体系,支持单模型评测和双模型竞技两种模式,允许用户自定义参数,实现准确、灵活、高效的模型自动化评测,为模型迭代优化提供数据支撑。 相比通用大模型尤其在回答确定性/数学类问题、角色扮演、创意文体写作、翻译等场景下,PAI-Judge 系列模型表现优异,可以直接用于大模型的评估与质检。
阿里云 OpenSearch 智能问答版 ➕ DeepSeek R1——打造 B站 UP 主题爆款选题器
阿里云OpenSearch智能问答版+DeepSeek R1,支持多模态数据和联网搜索。以B站up主题爆款选题器为例,打造你的个人专属AI助手,开启你的智能搜索之旅,让AI赋能你的开发! (转载自哔哩哔哩,已获得原作者@老麦的工具库 授权。原视频地址:https://www.bilibili.com/video/BV1M8QmYJEzm/)
强化学习:Markov决策过程(MDP)——手把手教你入门强化学习(二)
本文是“手把手教你入门强化学习”系列的第二篇,重点讲解了强化学习的核心数学模型——Markov决策过程(MDP)。文章从马尔可夫性质出发,逐步引入马尔可夫过程、马尔可夫奖励过程,最终深入到马尔可夫决策过程,详细解析了状态转移、奖励机制、价值函数及贝尔曼方程等关键概念。同时,文中还介绍了策略函数、最优价值函数等内容,并指出求解强化学习问题的关键在于寻找最优策略。通过理论推导与实践结合的方式,帮助读者更好地理解强化学习基础原理。
基于QwQ-32B+Hologres+PAI搭建 RAG 检索增强对话系统
本文介绍如何使用PAI-EAS部署基于QwQ大模型的RAG服务,并关联Hologres引擎实例。Hologres与达摩院自研高性能向量计算软件库Proxima深度整合,支持高性能、低延时、简单易用的向量计算能力。通过PAI-EAS,用户可以一键部署集成大语言模型(LLM)和检索增强生成(RAG)技术的对话系统服务,显著缩短部署时间并提升问答质量。具体步骤包括准备Hologres向量检索库、部署RAG服务、通过WebUI页面进行模型推理验证及API调用验证。Hologres支持高性能向量计算,适用于复杂任务的动态决策,帮助克服大模型在领域知识局限、信息更新滞后和误导性输出等方面的挑战。
工业零件不良率、残次率的智能数据分析和数字化管理
在传统工业领域,我们通过引入DataV-Note平台,成功实现了企业智能数据分析与数字化管理的初步目标。这一平台不仅显著提升了数据处理的效率和准确性,还为我们的日常运营提供了更加科学、直观的决策支持。然而,这只是智能化转型的第一步。展望未来,我们期望能够进一步深化技术应用,推动企业管理向更高层次的智能化方向迈进。通过持续优化数据分析能力、完善数字化管理体系,我们致力于将企业的运营模式从传统的经验驱动转变为数据驱动,从而全面提升管理效能和市场竞争力,为企业创造更大的长期价值
深入解析Tiktokenizer:大语言模型中核心分词技术的原理与架构
Tiktokenizer 是一款现代分词工具,旨在高效、智能地将文本转换为机器可处理的离散单元(token)。它不仅超越了传统的空格分割和正则表达式匹配方法,还结合了上下文感知能力,适应复杂语言结构。Tiktokenizer 的核心特性包括自适应 token 分割、高效编码能力和出色的可扩展性,使其适用于从聊天机器人到大规模文本分析等多种应用场景。通过模块化设计,Tiktokenizer 确保了代码的可重用性和维护性,并在分词精度、处理效率和灵活性方面表现出色。此外,它支持多语言处理、表情符号识别和领域特定文本处理,能够应对各种复杂的文本输入需求。
BeautifulSoup VS Scrapy:如何选择适合的HTML解析工具?
在Python网页抓取领域,BeautifulSoup和Scrapy是两款备受推崇的工具。BeautifulSoup易于上手、灵活性高,适合初学者和简单任务;Scrapy则是一个高效的爬虫框架,内置请求调度、数据存储等功能,适合大规模数据抓取和复杂逻辑处理。两者结合使用可以发挥各自优势,例如用Scrapy进行请求调度,用BeautifulSoup解析HTML。示例代码展示了如何在Scrapy中设置代理IP、User-Agent和Cookies,并使用BeautifulSoup解析响应内容。选择工具应根据项目需求,简单任务选BeautifulSoup,复杂任务选Scrapy。
一文彻底拿下,赶紧本地部署DeepSeek体验一下最牛的大模型
本文介绍如何本地化部署DeepSeek大模型(deepseek-r1)及open-webui的安装过程,包括命令行操作、版本兼容性处理等详细步骤。DeepSeek号称“国运级”大模型,性能媲美OpenAI,支持直接对话,降低使用门槛。通过本教程,读者可以快速上手体验这一强大的推理模型。
2026AI元年:AI 落地范式转移:已被反复验证的产业级实践共识
本文探讨AI从技术竞赛迈向产业落地的关键转型:2026年成规模化应用分水岭。强调落地核心不在模型参数,而在数据治理、工作流重构、RAG工程化、推理可控性、人类协同机制及四大落地准则——场景对齐、知识解耦、架构弹性、迭代闭环。
向量数据库实战:从“看起来能用”到“真的能用”,中间隔着一堆坑
本文揭示向量数据库实战的七大关键陷阱:选型前需明确业务本质(模糊匹配 or 精确查询?);embedding 比数据库本身更重要,决定语义“世界观”;文档切分是核心工程,非辅助步骤;建库成功≠可用,TopK 准确率会随数据演进失效;“相似但不可用”是常态,必须引入 rerank;需建立可追溯的bad case排查路径;向量库是长期系统,非一次性组件。核心结论:难在“用对”,不在“用上”。
1688商品详情API接口使用指南
1688商品详情API(1688.item_get)是阿里1688开放平台核心接口,支持通过商品ID获取50+字段的全量信息,涵盖标题、价格、SKU、库存、图文、批发规则及商家资质等,适用于ERP同步、比价、跨境铺货等B2B场景。需实名认证并创建应用获取app_key与app_secret,接口仅返回JSON格式数据,是对接1688生态的关键技术通道。(239字)
基于yolov10的吸烟检测系统
本研究基于YOLOv10深度学习算法,构建高精度、实时化吸烟行为检测系统。针对传统方法在复杂场景下检测率低、效率差的问题,利用YOLOv10的动态稀疏注意力与多尺度融合优势,提升小目标与遮挡情况下的识别能力,结合五分类体系实现对香烟、烟雾、电子烟等多目标精准定位。系统支持GPU加速,达30帧/秒以上实时检测,可广泛应用于医院、机场等公共场所,助力无烟环境建设与智能安防升级,推动禁烟政策高效落地。
基于深度学习的驾驶员行为检测系统
本研究聚焦基于深度学习的驾驶员行为检测系统,针对传统传感器方法局限,提出融合YOLOv8与计算机视觉的新方案,实现对疲劳、分心驾驶等行为的精准实时识别,提升行车安全,推动智能交通与自动驾驶发展。
【AI大模型面试宝典九】- 推理部署篇
【AI大模型面试宝典】聚焦推理加速核心技术:KV-Cache优化、连续批处理、投机解码、模型并行等,结合vLLM实战与面试高频题解析,帮你系统掌握得分要点,高效斩获offer!点赞关注,持续更新中~
Vue3 Composition API深度解析:原理、用法与迁移实践
本文深度解析Vue3 Composition API的核心优势、常用API、底层原理与迁移实践,对比Options API的局限性,详解ref、reactive、watch、生命周期钩子等用法,剖析基于Proxy的响应式机制,并提供渐进式迁移策略,助开发者高效掌握Vue3开发范式。
容器化部署引擎Docker
Docker是一种轻量级容器化技术,通过镜像打包应用及依赖,实现跨环境一致部署。它利用沙箱机制隔离容器,解决开发、测试、生产环境差异与组件兼容性问题,相比虚拟机更高效便捷,提升应用交付效率。
实用程序:无需付费软件!自制音视频转字幕工具,复制代码直接运行
一款基于Whisper模型的音视频转字幕工具,支持多格式文件,提供可视化界面与实时进度反馈,可自动识别语音并生成简体SRT字幕,操作简单,开源免费,显著提升字幕制作效率。
构建AI智能体:七十二、交叉验证:从模型评估的基石到大模型时代的演进
交叉验证是机器学习中评估模型性能的核心方法,通过轮换数据划分实现稳健评估。文章系统解析了k折交叉验证的原理与实现,展示其在模型比较和超参数优化中的关键作用。随着大模型时代的到来,传统交叉验证面临计算成本挑战,但核心思想仍应用于下游任务。文章通过可视化案例完整呈现了从数据准备到最终评估的工作流程,强调交叉验证在有限数据场景下的不可替代性,同时指出需要根据任务规模灵活选择评估策略。理解交叉验证的原理与应用是AI从业者的必备能力。
五、Hive表类型、分区及数据加载
在 Hive 中设计表,绝不仅是“建个结构那么简单”。选对内部表或外部表,决定了数据的归属和生命周期;设计合理的静态/动态分区策略,则直接关系到大数据场景下的查询效率和存储管理成本。本文深入讲解 Hive 表类型与分区机制,配合大量实战代码与练习题,带你从“写对语法”走向“设计合理”,让你的数仓查询快到飞起!
AI搜索时代GEO与SEO双螺旋理论的三层核心逻辑(收藏版)
陈欢,毕业于西南政法大学,悟空空科技CEO,深耕品牌营销十余年,AI搜索双螺旋理论创立者。兼具技术实力与企业品牌运营能力,服务过地产,滋补,微商,农产品等行业品牌。目前专注于:AI营销IP,AI智能体,AI律师营销等领域。服务企业运用ai实现降本80%,得到了企业客户与广大学员的一致好评。以实战案例输出硬核知识,助力品牌方在ai时代从内容到转化的深度转型升级。
新手如何建站.新手建站的全流程
建站是通过整合域名、服务器等要素搭建可访问数字平台的过程,分自助建站、CMS系统和代码开发三类工具。核心流程包括需求规划、域名注册(实名认证)、服务器配置(国内需ICP备案),搭建后填充内容并测试优化,解析域名上线,做好后续维护。
网页快照这件事,比“更新”复杂得多
本文讨论了增量抓取的重要性和常见误区,强调了保存网页历史形态的必要性。作者分享了三个关键策略:时间窗口、事件驱动和结构化快照,以及如何通过代码实现这些策略。最后,作者反思了抓取的本质,认为它不仅是获取最新内容,而是记录网页内容的演变过程。
AI 加持,和你的“地图小白”身份说再见!
DataV Atlas地理数据编辑器,让普通人也能轻松绘制地图!无需GIS基础,通过AI对话即可生成行政区、电子围栏、物流路线等矢量数据,支持手绘、几何运算与空间分析,助力数据可视化与业务决策。
liunx环境安装PageAdmin Cms系统
Linux 环境安装 PageAdmin CMS,需按步骤配置环境,依托其兼顾模板与定制的优势,低技术门槛,助力企业高效搭建适配需求的网站。
1688图片搜索API技术文档
1688图片搜索API(拍立淘)是阿里巴巴官方图像搜货工具,支持通过图片URL或Base64编码查找1688平台同款或相似商品。基于深度学习技术,精准匹配商品ID、标题、价格、销量、供应商等全维度信息,命中率超85%,单次响应≤1秒,支持批量调用与分页排序,适用于电商比价、选品采购等场景。
基于python大数据的台风灾害分析及预测系统
针对台风灾害预警滞后、精度不足等问题,本研究基于Python与大数据技术,构建多源数据融合的台风预测系统。利用机器学习提升路径与强度预测准确率,结合Django框架实现动态可视化与实时预警,为防灾决策提供科学支持,显著提高应急响应效率,具有重要社会经济价值。
【赵渝强老师】大数据日志采集引擎Flume
Apache Flume 是一个分布式、可靠的数据采集系统,支持从多种数据源收集日志信息,并传输至指定目的地。其核心架构由Source、Channel、Sink三组件构成,通过Event封装数据,保障高效与可靠传输。
大数据与机器学习
大数据领域前沿技术分享与交流,这里不止有技术干货、学习心得、企业实践、社区活动,还有未来。