京东SPU/SKU数据接口全解读:商品详情API文档
京东开放平台商品详情API提供标准化接口,支持获取SPU/SKU信息,适用于价格监控、库存管理等场景。支持HTTPS与JSON格式,具备高效性与扩展性。

【2025更新】视频压缩神器!视频体积瞬间缩小80%,可以指定大小压缩、批量压缩,超级良心免费使用!
Moo0视频压缩器是一款免费、高效的视频压缩工具,支持AVI、MP4等多种格式。可按文件大小、比例或屏幕尺寸智能压缩,兼顾画质与效率,操作简便,批量处理更省心,是2025年必备的视频压缩神器!
云上AI推理平台全掌握 (3):服务接入与全球调度
阿里云人工智能平台 PAI 平台推出的全球化的服务接入矩阵,为 LLM 服务量身打造了专业且灵活的服务接入方案,正重新定义 AI 服务的高可用接入标准——从单地域 VPC 安全隔离到跨洲际毫秒级调度,让客户的推理服务在任何网络环境下都能实现「接入即最优」。
Jupyter MCP服务器部署实战:AI模型与Python环境无缝集成教程
Jupyter MCP服务器基于模型上下文协议(MCP),实现大型语言模型与Jupyter环境的无缝集成。它通过标准化接口,让AI模型安全访问和操作Jupyter核心组件,如内核、文件系统和终端。本文深入解析其技术架构、功能特性及部署方法。MCP服务器解决了传统AI模型缺乏实时上下文感知的问题,支持代码执行、变量状态获取、文件管理等功能,提升编程效率。同时,严格的权限控制确保了安全性。作为智能化交互工具,Jupyter MCP为动态计算环境与AI模型之间搭建了高效桥梁。
CUDA重大更新:原生Python可直接编写高性能GPU程序
NVIDIA在2025年GTC大会上宣布CUDA并行计算平台正式支持原生Python编程,消除了Python开发者进入GPU加速领域的技术壁垒。这一突破通过重新设计CUDA开发模型,引入CUDA Core、cuPyNumeric、NVMath Python等核心组件,实现了Python与GPU加速的深度集成。开发者可直接用Python语法进行高性能并行计算,显著降低门槛,扩展CUDA生态,推动人工智能、科学计算等领域创新。此更新标志着CUDA向更包容的语言生态系统转型,未来还将支持Rust、Julia等语言。

阿里云PAI-DLC任务Pytorch launch_agent Socket Timeout问题源码分析
DLC任务Pytorch launch_agent Socket Timeout问题源码分析与解决方案
Qwen3 全尺寸模型支持通过阿里云PAI-ModelGallery 一键部署
Qwen3 是 Qwen 系列最新一代的大语言模型,提供了一系列密集(Dense)和混合专家(MOE)模型。目前,PAI 已经支持 Qwen3 全系列模型一键部署,用户可以通过 PAI-Model Gallery 快速开箱!
通过阿里云Milvus与通义千问VL大模型,快速实现多模态搜索
阿里云向量检索服务Milvus版是一款全托管向量检索引擎,并确保与开源Milvus的完全兼容性,支持无缝迁移。它在开源版本的基础上增强了可扩展性,能提供大规模AI向量数据的相似性检索服务。凭借其开箱即用的特性、灵活的扩展能力和全链路监控告警,Milvus云服务成为多样化AI应用场景的理想选择,包括多模态搜索、检索增强生成(RAG)、搜索推荐、内容风险识别等。您还可以利用开源的Attu工具进行可视化操作,进一步促进应用的快速开发和部署。
10招立竿见影的PyTorch性能优化技巧,让模型训练速度翻倍
本文系统总结了PyTorch性能调优的关键技术,涵盖混合精度训练、PyTorch 2.0编译功能、推理模式优化、Channels-Last内存格式、图优化与变换、cuDNN基准测试、内存使用优化等多个方面。通过实证测试,文章详细分析了各技术的实现细节、优势及适用场景,如混合精度训练可显著提升计算效率和内存利用率,torch.compile()能自动优化代码生成以加速模型运行。此外,还探讨了推理模式的选择、卷积操作优化及模型构建的最佳实践。这些方法结合良好的编码习惯,有助于开发者构建高效、可扩展的深度学习应用。
Quick BI 测评报告
Quick BI是阿里云推出的零代码可视化分析工具,适合个人开发者与小微团队使用。其核心优势在于轻量化启动(免费试用+按量付费)、多源接入(MySQL、MongoDB等)及敏捷分析能力(拖拽式仪表板)。实测显示,它支持智能CSV解析、语法高亮SQL编辑器和25+基础图表类型,具备图表联动交互功能。尽管缺少3D地图和自定义JS插件支持,但凭借低学习成本、OpenAPI扩展性以及移动端报表查看功能,Quick BI在个人项目展示、团队协作和轻量级数据分析中表现出色。不过,复杂计算需依赖SQL,移动端编辑和PDF导出存在局限性。
AI鱼类识别技术原理及示例代码
本文详细解析了AI鱼类识别的代码示例,涵盖深度学习框架选择、数据集处理、模型构建与训练优化全流程。内容包括技术选型对比(如TensorFlow、PyTorch、YOLO系列)、数据准备流程(开源数据集与标注规范)、完整代码示例(以PyTorch版ResNet50改进模型为例)以及模型优化策略(如量化压缩、知识蒸馏)。此外,还提供了典型应用场景(如渔业资源监测系统)、模型评估指标及开源项目推荐,并针对常见问题(小样本、水下模糊、类别不平衡等)提出解决方案。
方案介绍|基于百炼生成向量数据并使用阿里云Milvus存储和检索
阿⾥云Milvus是⼀款云上全托管服务,提供⼤规模向量数据的相似性检索服务。100%兼容开源Milvus,在开源版本的基础上增强了可扩展性,具备易⽤性、可⽤性、安全性、低成本与⽣态优势。阿⾥云Milvus可以⽀持⼏乎所有涉及到向量搜索的场景。例如检索增强⽣成RAG,以及经典的搜索推荐、多模态检索等。阿里云Milvus可存储百炼产生的向量数据,并进行大规模向量数据的检索。本文将重点介绍这一过程的方案。
Hologres实时湖仓能力入门实践
本文由武润雪(栩染)撰写,介绍Hologres 3.0版本作为一体化实时湖仓平台的升级特性。其核心能力包括湖仓存储一体、多模式计算一体、分析服务一体及Data+AI一体,极大提升数据开发效率。文章详细解析了两种湖仓架构:MaxCompute + Hologres实现离线实时一体化,以及Hologres + DLF + OSS构建开放湖仓架构,并深入探讨元数据抽象、权限互通等重点功能,同时提供具体使用说明与Demo演示。
时间序列特征提取:18 种高效工具库及其应用分析
时间序列特征提取是数据科学的重要环节,可将原始数据转化为分析价值高的特征表示。本文介绍18个Python库,涵盖通用与专业领域(如医疗、金融)的特征提取工具。这些库包括tsfeatures、tsfresh、librosa等,各自针对特定任务(如预测、分类、异常检测)提供独特功能。通过结合不同库的特点,数据科学家能更高效地进行特征工程,提升模型性能与分析深度。文章总结了各库的优势及适用场景,为实际应用提供了全面指导。
淘宝淘口令转换API接口(淘宝API系列)
淘宝淘口令转换API是用于将淘宝商品或店铺链接与淘口令进行双向转换的接口,支持HTTP POST请求。开发者可通过此API生成或解析淘口令,方便在不同平台传播淘宝内容,吸引更多潜在客户。API返回JSON格式数据,包含转换结果和状态信息。使用前需注册并申请权限,确保调用稳定可靠。示例代码展示了如何通过Python实现淘口令的生成和解析功能。
使用PHP接入纯真IP库:实现IP地址地理位置查询
本文介绍了如何使用PHP接入纯真IP库(QQWry),实现IP地址的地理位置查询。纯真IP库是一个轻量级的IP数据库,数据格式简单,查询速度快,适合Web应用。首先,下载并放置`QQWry.dat`文件到项目目录。接着,通过编写PHP类解析该文件,实现IP查询功能。最后,提供了一个完整的案例演示,展示如何查询IP地址对应的国家和地区信息。该工具适用于用户地理位置分析、访问日志分析和风控系统等场景,具有轻量级、查询速度快、数据更新方便等优点。

Logic-RL: 小模型也能强推理,通过基于规则的强化学习提升大语言模型结构化推理能力
这篇论文探讨了基于规则的强化学习(RL)如何提升大型语言模型(LLM)的高级推理能力。通过在程序生成的逻辑谜题上训练并强制执行结构化思考,即使是较小的模型也能开发出可转移的问题解决策略。研究引入了多层次奖励系统,包括格式、答案、推理一致性和反思奖励,以引导模型形成严谨的推理过程。实验结果表明,这种方法不仅提高了模型在逻辑任务上的性能,还在数学问题解决、代码调试等领域展现出显著的泛化能力。此外,该方法在较小模型上实现了与大模型相当甚至更优的推理表现,为资源受限环境下的高效推理提供了新途径。

LLM高效推理:KV缓存与分页注意力机制深度解析
随着大型语言模型(LLM)规模和复杂性的增长,高效推理变得至关重要。KV缓存和分页注意力是优化LLM推理的两项关键技术。KV缓存通过存储键值对减少重复计算,而分页注意力则通过将序列分割成小块来降低内存消耗,从而有效处理长序列。本文深入剖析这些技术的工作原理及其在仅解码器模型中的应用,探讨其优势与挑战,并展示其实现示例。
DeepSeek模型的突破:性能超越R1满血版的关键技术解析
上海AI实验室周伯文团队的最新研究显示,7B版本的DeepSeek模型在性能上超越了R1满血版。该成果强调了计算最优Test-Time Scaling的重要性,并提出了一种创新的“弱到强”优化监督机制的研究思路,区别于传统的“从强到弱”策略。这一方法不仅提升了模型性能,还为未来AI研究提供了新方向。
豆包MarsCode “一键Apply”功能测评:编程效率革新利器
豆包MarsCode的“一键Apply”功能旨在提升开发者编程效率,通过AI自动生成和应用代码,简化重复操作、精准修复错误、助力新项目开发及快速生成注释。安装插件后,在VSCode中与AI对话生成代码并点击Apply按钮即可完成应用,过程流畅高效。适用于C++、Java、Python等多语言环境,极大节省开发时间,降低手动操作风险。无论是资深开发者还是新手,都能从中受益,显著提升编程体验。
DGL(0.8.x) 技术点分析
DGL是由Amazon发布的图神经网络开源库,支持TensorFlow、PyTorch和MXNet。DGL采用消息传递范式进行图计算,包括边上计算、消息函数、点上计算、聚合与更新函数等。其架构分为顶层业务抽象、Backend多后端适配、Platform高效计算适配以及C++性能敏感功能层,确保高效、灵活的图神经网络开发。

PyTorch Profiler 性能优化示例:定位 TorchMetrics 收集瓶颈,提高 GPU 利用率
本文探讨了机器学习项目中指标收集对训练性能的影响,特别是如何通过简单实现引入不必要的CPU-GPU同步事件,导致训练时间增加约10%。使用TorchMetrics库和PyTorch Profiler工具,文章详细分析了性能瓶颈的根源,并提出了多项优化措施
云上一键部署 DeepSeek-V3 模型,阿里云 PAI-Model Gallery 最佳实践
本文介绍了如何在阿里云 PAI 平台上一键部署 DeepSeek-V3 模型,通过这一过程,用户能够轻松地利用 DeepSeek-V3 模型进行实时交互和 API 推理,从而加速 AI 应用的开发和部署。
Python 语言结合 Flask 框架来实现一个基础的代购商品管理、用户下单等功能的简易系统
这是一个使用 Python 和 Flask 框架实现的简易代购系统示例,涵盖商品管理、用户注册登录、订单创建及查看等功能。通过 SQLAlchemy 进行数据库操作,支持添加商品、展示详情、库存管理等。用户可注册登录并下单,系统会检查库存并记录订单。此代码仅为参考,实际应用需进一步完善,如增强安全性、集成支付接口、优化界面等。
解决方案评测|主动式智能导购AI助手构建
阿里云的主动式智能导购AI助手是电商商家提升用户体验和销量的利器。它能实时分析用户行为,提供个性化推荐,支持多渠道无缝对接,并具备语音和文本交互功能。通过注册阿里云账号、开通服务、配置项目、设置推荐策略、集成到平台并测试优化,商家可以轻松部署这一工具。关键代码示例帮助理解API对接和数据处理。建议增强个性化推荐算法、优化交互体验并增加自定义选项,以进一步提升效果。
DataWorks 稳定性保障全解析:深入监控与资源调配
DataWorks 的稳定性保障体系涵盖精细监控与资源调配,确保企业数据业务高效、稳定运行。监控模块包括资源、任务和质量监控,及时预警并处理异常;资源调配策略则针对集成、调度、数据服务及计算资源进行科学配置,保障数据同步、任务优先级和高并发需求。通过全方位的监控和合理的资源配置,DataWorks 为企业筑牢数据根基,助力数字化转型。
深度解读面向大模型开发和应用的数据处理套件
本文深入解读了大数据与AI联合场景下的技术,重点探讨了大语言模型、多模态模型训练及应用数据处理。文章首先分析了算法、算力和数据在大模型训练中的重要性,强调数据采集、标注和质量控制的关键作用。接着介绍了PAI平台上的端到端数据处理套件,涵盖预训练、有监督微调和偏好对齐的数据处理流程,以及数据合成和蒸馏技术的应用。最后展望了未来在多模态处理、性能优化和行业解决方案方面的扩展方向。
面向医疗场景的大模型 RAG 检索增强解决方案
本方案为您介绍,如何使用人工智能平台 PAI 构建面向医疗场景的大模型 RAG 检索增强解决方案。

10个必备Python调试技巧:从pdb到单元测试的开发效率提升指南
在Python开发中,调试是提升效率的关键技能。本文总结了10个实用的调试方法,涵盖内置调试器pdb、breakpoint()函数、断言机制、logging模块、列表推导式优化、IPython调试、警告机制、IDE调试工具、inspect模块和单元测试框架的应用。通过这些技巧,开发者可以更高效地定位和解决问题,提高代码质量。

基于Huffman树的层次化Softmax:面向大规模神经网络的高效概率计算方法
层次化Softmax算法通过引入Huffman树结构,将传统Softmax的计算复杂度从线性降至对数级别,显著提升了大规模词汇表的训练效率。该算法不仅优化了计算效率,还在处理大规模离散分布问题上提供了新的思路。文章详细介绍了Huffman树的构建、节点编码、概率计算及基于Gensim的实现方法,并讨论了工程实现中的优化策略与应用实践。
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
静态代理IP访问失败的问题解释?
本文介绍了在浏览器中使用静态代理IP访问失败的多种可能原因,包括代理设置错误、代理服务器问题、站点策略限制、网络连接问题、浏览器设置问题、代理类型不支持及认证问题等,并提供了相应的解决建议。
Java爬虫:数据采集的强大工具
在数据驱动的时代,Java爬虫技术凭借其强大的功能和灵活性,成为企业获取市场信息、用户行为及竞争情报的关键工具。本文详细介绍了Java爬虫的工作原理、应用场景、构建方法及其重要性,强调了在合法合规的前提下,如何有效利用Java爬虫技术为企业决策提供支持。

Scikit-learn Pipeline完全指南:高效构建机器学习工作流
Scikit-learn管道是构建高效、鲁棒、可复用的机器学习工作流程的利器。通过掌握管道的使用,我们可以轻松地完成从数据预处理到模型训练、评估和部署的全流程,极大地提高工作效率。
你不可不知道的JAVA EE 框架有哪些?
本文介绍了框架的基本概念及其在编程领域的应用,强调了软件框架作为通用、可复用的软件环境的重要性。文章分析了早期Java EE开发中使用JSP+Servlet技术的弊端,包括可维护性差和代码重用性低等问题,并阐述了使用框架的优势,如提高开发效率、增强代码规范性和可维护性及提升软件性能。最后,文中详细描述了几种主流的Java EE框架,包括Spring、Spring MVC、MyBatis、Hibernate和Struts 2,这些框架通过提供强大的功能和支持,显著提升了Java EE应用的开发效率和稳定性。
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。

大数据与机器学习
大数据领域前沿技术分享与交流,这里不止有技术干货、学习心得、企业实践、社区活动,还有未来。