《智能数据建设与治理 Dataphin》的最佳实践
本文介绍了使用Dataphin进行离线数仓搭建的实操教程,涵盖从创建数据板块到数据分析的完整流程。内容包括登录控制台、配置计算源、创建离线管道、生成SQL语句、运行任务及验证数据等步骤。通过详细的操作指南和截图,帮助用户快速上手Dataphin,体验其强大的数据治理能力。总结中提到教程存在部分陈旧问题,建议加深对产品逻辑的理解以更好地掌握工具使用。
vscode推送项目到github仓库故障解决1
本文介绍了如何优雅解决本地仓库与远程仓库历史记录不一致的问题,并提供避免未来问题的最佳实践。核心在于理解问题根源(如历史记录差异和常见原因),采用推荐的解决方案(先本地初始化再关联远程仓库),并遵循一致的工作流程、团队协作规范及熟悉 Git 命令。通过强制推送或合并无关历史记录等方式处理现有冲突,同时养成良好习惯以预防类似问题。
阿里云 AI 搜索产品荣获 Elastic Innovation Award 2024
在新加坡 ElasticON 2025 的 Elastic 合作伙伴峰会上,阿里云 AI 搜索产品荣获 Elastic Innovation Award 2024!
通过Milvus内置Sparse-BM25算法进行全文检索并将混合检索应用于RAG系统
阿里云向量检索服务Milvus 2.5版本在全文检索、关键词匹配以及混合检索(Hybrid Search)方面实现了显著的增强,在多模态检索、RAG等多场景中检索结果能够兼顾召回率与精确性。本文将详细介绍如何利用 Milvus 2.5 版本实现这些功能,并阐述其在RAG 应用的 Retrieve 阶段的最佳实践。
LLM高效推理:KV缓存与分页注意力机制深度解析
随着大型语言模型(LLM)规模和复杂性的增长,高效推理变得至关重要。KV缓存和分页注意力是优化LLM推理的两项关键技术。KV缓存通过存储键值对减少重复计算,而分页注意力则通过将序列分割成小块来降低内存消耗,从而有效处理长序列。本文深入剖析这些技术的工作原理及其在仅解码器模型中的应用,探讨其优势与挑战,并展示其实现示例。
云上玩转DeepSeek系列之三:PAI-RAG集成联网搜索,构建企业级智能助手
本文将为您带来“基于 PAI-RAG 构建 DeepSeek 联网搜索+企业级知识库助手服务”解决方案,PAI-RAG 提供全面的生态能力,支持一键部署至企业微信、微信公众号、钉钉群聊机器人等,助力打造多场景的AI助理,全面提升业务效率与用户体验。
DeepSeek背后的技术基石:DeepSeekMoE基于专家混合系统的大规模语言模型架构
DeepSeekMoE是一种创新的大规模语言模型架构,融合了专家混合系统(MoE)、多头潜在注意力机制(MLA)和RMSNorm归一化。通过专家共享、动态路由和潜在变量缓存技术,DeepSeekMoE在保持性能的同时,将计算开销降低了40%,显著提升了训练和推理效率。该模型在语言建模、机器翻译和长文本处理等任务中表现出色,具备广泛的应用前景,特别是在计算资源受限的场景下。
设计文档:智能化医疗设备数据分析与预测维护系统
本系统的目标是构建一个基于人工智能的智能化医疗设备的数据分析及预测维护平台,实现对医疗设备运行数据的实时监控、高效处理和分析,提前发现潜在问题并进行预防性维修,从而降低故障率,提升医疗服务质量。
BladeDISC++:Dynamic Shape AI 编译器下的显存优化技术
本文介绍了阿里云 PAI 团队近期发布的 BladeDISC++项目,探讨在动态场景下如何优化深度学习训练任务的显存峰值,主要内容包括以下三个部分:Dynamic Shape 场景下显存优化的背景与挑战;BladeDISC++的创新解决方案;Llama2 模型的实验数据分析
高真实感3D高斯数字化身
本次分享介绍了3D高速扩建高新作为一种新的可微渲染技术,特别是高斯泼溅技术在数字化身3D领域的应用。该技术通过高斯点云扩展传统3D点云属性,实现高真实感、实时交互渲染,优化3D重建与多视点图像生成。文中还探讨了数字化身的构建与应用,包括全身和人头模型的创建,并展示了其在不同环境光照下的效果。最后,提出了未来研究方向,如更灵活的编辑和视频生成大模型的融合,以提升数字人的可控性和真实感。
陪玩系统安全问题 陪玩系统用户体验 陪玩系统功能 陪玩搜索功能优化 陪玩系统开发教程
陪玩系统的安全问题至关重要,涉及用户数据保护、支付安全和平台稳定性。关键措施包括多因子认证、支付接口加密、防止恶意脚本注入、DDoS攻击防护及数据加密。同时,优化用户体验也非常重要,如简化操作流程、提供互动功能和个性化服务。核心功能涵盖用户注册、陪玩师资料展示、智能匹配、实时通讯、支付结算等。开发时需综合考虑需求分析、技术选型、界面设计和功能实现,并进行充分测试与优化,确保系统稳定性和安全性。
Flink 2.0 存算分离状态存储 — ForSt DB
本文整理自阿里云技术专家兰兆千在Flink Forward Asia 2024上的分享,主要介绍Flink 2.0的存算分离架构、全新状态存储内核ForSt DB及工作进展与未来展望。Flink 2.0通过存算分离解决了本地磁盘瓶颈、检查点资源尖峰和作业恢复速度慢等问题,提升了云原生部署能力。ForSt DB作为嵌入式Key-value存储内核,支持远端读写、批量并发优化和快速检查点等功能。性能测试表明,ForSt在异步访问和本地缓存支持下表现卓越。未来,Flink将继续完善SQL Operator的异步优化,并引入更多流特性支持。
流存储Fluss:迈向湖流一体架构
本文整理自阿里云高级开发工程师罗宇侠在Flink Forward Asia 2024上海站的分享,介绍了湖流割裂的现状与挑战,Fluss湖流一体架构的设计与优势,以及未来规划。内容涵盖湖流割裂的现状、Fluss架构详解、湖流一体带来的收益,以及未来的生态扩展和技术优化。
The Past, Present and Future of Apache Flink
本文整理自阿里云开源大数据负责人王峰(莫问)在 Flink Forward Asia 2024 上海站主论坛开场的分享,今年正值 Flink 开源项目诞生的第 10 周年,借此时机,王峰回顾了 Flink 在过去 10 年的发展历程以及 Flink社区当前最新的技术成果,最后展望下一个十年 Flink 路向何方。
基于阿里云Elasticsearch Enterprise构建AI搜索与可观测Chatbot
本次公开课我们将深入探讨如何构建高效的AI技术解决方案,Elastic和阿里云搜索技术专家将深入解读阿里云Elasticsearch Enterprise版的AI功能及其在实际应用。通过公开课,您可以了解构建AI搜索和AI Assistant的技术原理,并轻松掌握从0到1搭建企业级RAG应用,和基于大模型搭建可观测Chatbot,获取运维洞察。 讲师/嘉宾简介 朱杰(Elastic中国首席解决方案架构师、Elastic社区和阿里云Elasticsearch社区布道者) 槐新 (阿里云Elasticsearch引擎研发工程师)
如何在Windows和Mac上免费将蓝光转换为MKV?
蓝光光盘因能提供高质量的视频和音频内容而备受青睐,但其使用上的局限性却不容忽视。相比之下,MKV作为一种广受支持的视频格式,与大多数播放设备和平台都能完美兼容,为用户带来了更大的便利性和灵活性。
如何运用JAVA开发API接口?
本文详细介绍了如何使用Java开发API接口,涵盖创建、实现、测试和部署接口的关键步骤。同时,讨论了接口的安全性设计和设计原则,帮助开发者构建高效、安全、易于维护的API接口。
SSL和TLS部署实践
【10月更文挑战第28天】在TLS中,服务器的加密身份和强大私钥是安全基础,2048位RSA密钥足以满足大多数需求。保护私钥需在可信环境生成、加密存储、使用HSM、及时撤销旧证书、每年更新证书。确保证书覆盖所有域名,选择可靠CA,使用SHA256签名算法,配置完整证书链,禁用不安全加密套件,启用前向保密,使用会话重用机制,启用OCSP Stapling,加密整个网站,删除混合内容,安全设置Cookie,配置HSTS和CSP。
redis数据库超级详细(一)
本文介绍了 Redis 的基础与进阶知识。Redis 是一个使用 ANSI C 编写的开源、支持网络、基于内存、可选持久性的键值对存储数据库,属于 NoSQL 数据库。文章详细讲解了 Redis 的安装、配置、数据类型及其操作,包括字符串、哈希、列表、集合和有序集合等。此外,还提供了 Python 操作 Redis 的示例代码,以及 Redis 在实际应用中的几个典型案例,如 KV 缓存、分布式锁、延迟队列、发布订阅和定时任务等。通过这些内容,读者可以全面了解 Redis 的核心功能和应用场景。
氛围编程陷阱:为什么AI生成代码正在制造大量"伪开发者"
AI兴起催生“氛围编程”——用自然语言生成代码,看似高效实则陷阱。它让人跳过编程基本功,沦为只会提示、不懂原理的“中间商”。真实案例显示,此类项目易崩溃、难维护,安全漏洞频出。AI是技能倍增器,非替代品;真正强大的开发者,永远是那些基础扎实、能独立解决问题的人。
WorldSimBench: 迈向作为世界模拟器的视频生成模型——论文阅读
WorldSimBench提出了一种新框架,旨在将视频生成模型发展为具备物理理解与动作执行能力的世界模拟器。通过构建层次化评估体系(S0-S3)和HF-Embodied数据集,结合显式感知与隐式操作双重评估,推动具身智能体在Minecraft、自动驾驶和机器人等场景中的真实任务表现。
UPN512技术架构白皮书
随着AI算力超节点的演进,xPU Scale up 系统遇到新的挑战,基于此,阿里云提出UPN(Ultra Performance Network)架构,旨在构建“大规模、高性能、高可靠、低成本、可扩展” 的 Scale up 网络系统,本文阐述UPN512系统的关键架构设计。
基于Android的电子记账本系统
本项目研究开发一款基于Java与Android平台的开源电子记账系统,采用SQLite数据库和Gradle工具,实现高效、安全、便捷的个人财务管理,顺应数字化转型趋势。
基于springboot的家政服务预约系统
随着社会节奏加快与老龄化加剧,家政服务需求激增,但传统模式存在信息不对称、服务不规范等问题。基于Spring Boot、Vue、MySQL等技术构建的家政预约系统,实现服务线上化、标准化与智能化,提升用户体验与行业效率,推动家政服务向信息化、规范化发展。
解决推理能力瓶颈,用因果推理提升LLM智能决策
从ChatGPT到AI智能体,标志着AI从对话走向自主执行复杂任务的能力跃迁。AI智能体可完成销售、旅行规划、外卖点餐等多场景任务,但其发展受限于大语言模型(LLM)的推理能力。LLM依赖统计相关性,缺乏对因果关系的理解,导致在非确定性任务中表现不佳。结合因果推理与内省机制,有望突破当前AI智能体的推理瓶颈,提升其决策准确性与自主性。
量子机器学习入门:三种数据编码方法对比与应用
在量子机器学习中,数据编码方式决定了量子模型如何理解和处理信息。本文详解角度编码、振幅编码与基础编码三种方法,分析其原理、实现及适用场景,帮助读者选择最适合的编码策略,提升量子模型性能。
Lazada 如何用实时计算 Flink + Hologres 构建实时商品选品平台
本文整理自 Lazada Group EVP 及供应链技术负责人陈立群在 Flink Forward Asia 2025 新加坡实时分析专场的分享。作为东南亚领先的电商平台,Lazada 面临在六国管理数十亿商品 SKU 的挑战。为实现毫秒级数据驱动决策,Lazada 基于阿里云实时计算 Flink 和 Hologres 打造端到端实时商品选品平台,支撑日常运营与大促期间分钟级响应。本文深入解析该平台如何通过流式处理与实时分析技术重构电商数据架构,实现从“事后分析”到“事中调控”的跃迁。
[VLDB 2025]面向云计算平台的多模态慢查询根因排序
阿里云联合团队提出RCRank,用于云数据库慢查询根因分析。该方法通过多模态数据融合与神经网络模型,实现根因影响估计与排序,提升优化效率14%,被VLDB 2025接收。
JAX快速上手:从NumPy到GPU加速的Python高性能计算库入门教程
JAX是Google开发的高性能数值计算库,旨在解决NumPy在现代计算需求下的局限性。它不仅兼容NumPy的API,还引入了自动微分、GPU/TPU加速和即时编译(JIT)等关键功能,显著提升了计算效率。JAX适用于机器学习、科学模拟等需要大规模计算和梯度优化的场景,为Python在高性能计算领域开辟了新路径。
Windows无法连接到打印机,请检查打印机名并重试 - 配置Windows 共享打印机出错;
WIN7共享打印机无法被WIN11连接,出现错误代码0x0000011b或0x00000709,可能是系统版本不兼容所致。本文提供多个轻量级修复工具,无需安装,双击即用,专为解决此类小问题设计,操作简单,适合普通用户快速修复打印机连接异常。
Redis核心数据结构与分布式锁实现详解
Redis 是高性能键值数据库,支持多种数据结构,如字符串、列表、集合、哈希、有序集合等,广泛用于缓存、消息队列和实时数据处理。本文详解其核心数据结构及分布式锁实现,帮助开发者提升系统性能与并发控制能力。
深入研究:淘宝天猫关键词搜索接口详解
淘宝和天猫提供关键词搜索商品的API接口,支持开发者按关键词获取商品列表及相关数据。功能包括通过搜索关键词(q)返回商品基本信息,如ID、标题、价格、图片、销量等。支持排序(sort)、分页(page_no/page_size)、价格区间筛选(start_price/end_price)及分类搜索(cat)。返回JSON格式数据,含商品ID、标题、价格、图片链接、详情页链接和销量等字段。
Python 3D数据可视化:7个实用案例助你快速上手
本文介绍了基于 Python Matplotlib 库的七种三维数据可视化技术,涵盖线性绘图、散点图、曲面图、线框图、等高线图、三角剖分及莫比乌斯带建模。通过具体代码示例和输出结果,展示了如何配置三维投影环境并实现复杂数据的空间表示。这些方法广泛应用于科学计算、数据分析与工程领域,帮助揭示多维数据中的空间关系与规律,为深入分析提供技术支持。
如何实现电竞比赛的实时直播?
电竞直播如何实现丝滑体验?揭秘其背后架构与技术!从选手操作数据捕获到观众多视角体验,超低延迟编码、智能OB系统、全球加速网络等五大关键技术支撑。面对海量数据与同步挑战,采用列式存储、时间戳同步和区块链防作弊。未来还将迎来云游戏式直播、AR可视化等创新,甚至全息投影与AI集锦生成,为观众带来沉浸式享受。
手把手教你抓取京东商品评论:API 接口解析与 Python 实战
京东商品评论蕴含用户对产品质量、体验和服务的真实反馈,分析这些数据有助于企业优化产品和满足用户需求。由于京东未提供官方API,需通过逆向工程获取评论数据。其主要接口为“商品评论列表接口”,支持按商品ID、评分、排序方式等参数获取评论,返回JSON格式数据,包含评论列表、摘要(如好评率)及热门标签等信息。
如何用大模型+RAG 给宠物做一个 AI 健康助手?——阿里云 AI 搜索开放平台
本文分享了如何利用阿里云 AI 搜索开放平台,基于 LLM+RAG 的系统框架,构建“宠物医院AI助手”的实践过程。
抖音集团电商流量实时数仓建设实践
本文基于抖音集团电商数据工程师姚遥在Flink Forward Asia 2024的分享,围绕电商流量数据处理展开。内容涵盖业务挑战、电商流量建模架构、流批一体实践、大流量任务调优及总结展望五个部分。通过数据建模与优化,实现效率、质量、成本和稳定性全面提升,数据质量达99%以上,任务性能提升70%。未来将聚焦自动化、低代码化与成本优化,探索更高效的流批一体化方案。
大数据与机器学习
大数据领域前沿技术分享与交流,这里不止有技术干货、学习心得、企业实践、社区活动,还有未来。