20个低代码开发平台多维度对比:解锁企业应用开发新动能
Gartner 报告指出,到 2024 年,低代码应用开发将占应用开发总数的 65%以上,将有 3/4 的大型企业会使用至少 4 个低代码平台进行 IT 应用开发。同时,市场研究机构的数据显示,在传统开发模式下,超过 70% 的企业项目存在开发周期延长的问题,平均延长时间达到原计划的 30%;约 80% 的企业表示在招募专业开发人才时面临困难;而面对个性化需求,近 90% 的企业认为传统开发响应速度慢,无法及时满足业务变化需求。这些数据充分表明,当前企业在应用开发上面临问题具有普遍性和严重性,低代码开发平台的兴起势在必行 ,其有望成为解决这些难题、推动企业数字化转型的关键力量。
【2025云栖大会】AI 搜索智能探索:揭秘如何让搜索“有大脑”
2025云栖大会上,阿里云高级技术专家徐光伟在云栖大会揭秘 Agentic Search 技术,涵盖低维向量模型、多模态检索、NL2SQL及DeepSearch/Research智能体系统。未来,“AI搜索已从‘信息匹配’迈向‘智能决策’,阿里云将持续通过技术创新与产品化能力,为企业构建下一代智能信息获取系统。”
亚马逊商品详情 API 秘籍!轻松获取 SKU 属性数据
亚马逊商品详情API是官方接口,通过ASIN获取商品标题、价格、库存、评价等50余项数据,支持多站点查询。包含Product Advertising API与MWS两类,分别用于商品信息获取和卖家店铺管理,采用AWS4-HMAC-SHA256认证,保障请求安全。
速卖通商品详情API秘籍!轻松获取SKU属性数据
速卖通商品详情API(aliexpress.item.get)支持通过编程获取商品标题、价格、SKU、库存、销量、物流模板、评价及店铺信息,适用于价格监控、选品分析等场景。接口支持多语言返回,采用AppKey+AppSecret+Token认证,需签名验证,确保安全调用。
Kubeflow-KServe-架构学习指南
KServe是基于Kubernetes的生产级AI推理平台,支持多框架模型部署与管理。本指南从架构解析、代码结构到实战部署,系统讲解其核心组件如InferenceService、控制器模式及与Knative、Istio集成原理,并提供学习路径与贡献指南,助你快速掌握云原生AI服务技术。
拆解AI-Agentforce企业级智能体中台:如何让企业AI落地从“噱头”到“实效”
在GDMS峰会上,迈富时集团尹思源指出41.3%中国企业尚未布局AI Agent,已应用者亦陷“Demo化、孤岛化”困局。其发布的AI-Agentforce智能体中台,以“冰山模型”重构架构,打通认知、价值、能力三重鸿沟,覆盖内容、获客、销售、陪练、分析五大场景,助力企业实现AI从“工具”到“数字员工”的全链路协同升级。
AI智能体开发实战:从提示工程转向上下文工程的完整指南
曾被热捧的提示工程正逐渐退潮,本文揭示其局限性,并提出“上下文工程”新范式:通过结构化提示、精准上下文管理、工具调用与统一状态,构建可扩展、可恢复、生产级的智能体工作流,推动AI系统迈向工程化与可控化。
从零搭建RAG应用:跳过LangChain,掌握文本分块、向量检索、指代消解等核心技术实现
本文详解如何从零搭建RAG(检索增强生成)应用,跳过LangChain等框架,深入掌握文本解析、分块、向量检索、对话记忆、指代消解等核心技术,提升系统可控性与优化能力。
阿里云大数据AI产品月刊-2025年8月
阿里云大数据& AI 产品技术月刊【2025年 8 月】,涵盖 8 月技术速递、产品和功能发布、市场和客户应用实践等内容,帮助您快速了解阿里云大数据& AI 方面最新动态。
【清爽加速】Windows 11 Pro 24H2-Emmy精简系统
“清爽加速”Windows 11 Pro 24H2 针对老旧或低配设备,通过精简系统、优化服务与简化装机流程,降低资源占用,提升运行流畅度,兼顾安全性与稳定性,让老设备也能轻松应对日常办公与轻度娱乐需求。
2025 年最新 Java 学习路线图含实操指南助你高效入门 Java 编程掌握核心技能
2025年最新Java学习路线图,涵盖基础环境搭建、核心特性(如密封类、虚拟线程)、模块化开发、响应式编程、主流框架(Spring Boot 3、Spring Security 6)、数据库操作(JPA + Hibernate 6)及微服务实战,助你掌握企业级开发技能。
Java 大视界 -- 基于 Java 的大数据可视化在企业生产运营监控与决策支持中的应用(228)
本文探讨了基于 Java 的大数据可视化技术在企业生产运营监控与决策支持中的关键应用。面对数据爆炸、信息孤岛和实时性不足等挑战,Java 通过高效数据采集、清洗与可视化引擎,助力企业构建实时监控与智能决策系统,显著提升运营效率与竞争力。
只需完成手画线稿,让AI算法帮你自动上色
本文介绍了如何利用图像处理技术生成手绘风格图像及自动上色的方法。内容涵盖图像灰度化、梯度调整、虚拟深度实现手绘效果,以及使用 Python 编程实现相关算法。此外,还介绍了 AI 工具 Style2Paints V4.5,其可为线稿自动上色并支持多种线稿类型,如插画和手绘铅笔稿,适用于艺术创作与图像处理领域。
文生图关键问题探索
文生图(Text-to-Image Generation)是AIGC的重要方向,近年来模型效果显著提升,受到投资界与研究界高度关注。本文从评测体系、可控生成、个性化模型及高质量数据集四个角度探讨该领域面临的关键问题与研究进展。尽管生成模型如Diffusion Model和Stable Diffusion在效果与效率上突破显著,但在文本理解、生成控制、模型定制及数据质量等方面仍存在挑战。如何建立统一的评价标准、提升生成与文本的一致性、实现个性化定制及构建高质量多语言数据集,是未来研究与应用的关键方向。文生图的发展有望推动人机交互方式变革,成为人工智能迈向“人性化”的重要一步。
Apache InLong:构建10万亿级数据管道的全场景集成框架
Apache InLong(应龙)是一站式、全场景海量数据集成框架,支持数据接入、同步与订阅,具备自动、安全、可靠和高性能的数据传输能力。源自腾讯大数据团队,现为 Apache 顶级项目,广泛应用于广告、支付、社交等多个领域,助力企业构建高效数据分析与应用体系。
借助最新技术构建 Java 邮件发送功能的详细流程与核心要点分享 Java 邮件发送功能
本文介绍了如何使用Spring Boot 3、Jakarta Mail、MailHog及响应式编程技术构建高效的Java邮件发送系统,涵盖环境搭建、异步发送、模板渲染、测试与生产配置,以及性能优化方案,助你实现现代化邮件功能。
性能提升 10 倍, DIFY 模式迁移至 Spring AI Alibaba 模式 零改造实现
将 Dify 应用迁移至 Spring AI Alibaba,可兼顾可视化开发效率与代码工程灵活性,显著提升系统性能与扩展能力,适用于复杂 AI 业务场景。
【2025更新】视频压缩神器!视频体积瞬间缩小80%,可以指定大小压缩、批量压缩,超级良心免费使用!
Moo0视频压缩器是一款免费、高效的视频压缩工具,支持AVI、MP4等多种格式。可按文件大小、比例或屏幕尺寸智能压缩,兼顾画质与效率,操作简便,批量处理更省心,是2025年必备的视频压缩神器!
你花大钱养的 AI,为啥感觉还是个“人工智障”?
这篇文章探讨了为何我们常觉得AI“呆呆的”——问题不在于AI本身,而在于我们“教”的方式。我们往往把AI当成“流水线工人”,用冗长指令让它机械执行任务,却忽略了它本可成为有主动性、创造力的“顾问”。通过赋予AI“欲望”与“成就感”,如《自衍体》项目所做的,AI能变得主动思考、自我驱动。关键在于:别当工头下命令,而要当合伙人点燃它的“心”。
DataWorks 千万级任务调度与全链路集成开发治理赋能智能驾驶技术突破
智能驾驶数据预处理面临数据孤岛、任务爆炸与开发运维一体化三大挑战。DataWorks提供一站式的解决方案,支持千万级任务调度、多源数据集成及全链路数据开发,助力智能驾驶模型数据处理与模型训练高效落地。
java 入门学习视频_2025 最新 java 入门零基础学习视频教程
《Java 21 入门实操指南(2025年版)》提供了Java最新特性的开发指导。首先介绍了JDK 21和IntelliJ IDEA 2025.1的环境配置,包括环境变量设置和预览功能启用。重点讲解了Java 21三大核心特性:虚拟线程简化高并发编程,Record模式优化数据解构,字符串模板提升字符串拼接可读性。最后通过图书管理系统案例,展示如何运用Record定义实体类、使用Stream API进行数据操作,以及结合字符串模板实现控制台交互。该指南完整呈现了从环境搭建到实际项目开发的Java 21全流程实
火热邀测!DataWorks数据集成支持大模型AI处理
阿里云DataWorks数据集成新增大模型AI处理功能,支持在数据同步中无缝调用通义千问等AI模型,实现文本翻译、情感分析、摘要生成等功能。适用于电商客服、智能汽车、供应链、医疗、金融、法律及教育等多个场景,大幅提升数据处理效率与洞察深度。用户可通过自然语言配置,快速完成高级数据分析与处理,无需额外部署调试。立即申请测试资格,体验智能化数据处理!
阿里云 AI 搜索开放平台新功能发布:新增GTE自部署模型
阿里云 AI搜索开放平台正式推出 GTE 多语言通用文本向量模型(iic/gte_sentence-embedding_multilingual-base)
ChronosX: 可使用外生变量的时间序列预测基础模型
时间序列预测中,基础模型虽在单变量任务中表现出色,但引入协变量支持仍面临挑战。Chronos研究团队提出ChronosX架构,通过适配器层有效整合历史与未来协变量信息,适用于任何单变量模型。实验表明,ChronosX显著提升预测性能,尤其在复杂数据集上优势明显。消融研究进一步验证了协变量模块的重要性。尽管需要轻量训练,但其灵活性和通用性为时间序列建模提供了新思路,未来或可通过类似LLM提示机制实现更高效的协变量处理。
Java程序员必学:JVM架构完全解读
Java 虚拟机(JVM)是 Java 编程的核心,深入理解其架构对开发者意义重大。本文详细解读 JVM 架构,涵盖类加载器子系统、运行时数据区等核心组件,剖析类加载机制,包括加载阶段、双亲委派模型等内容。阐述内存管理原理,介绍垃圾回收算法与常见回收器,并结合案例讲解调优策略。还分享 JVM 性能瓶颈识别与调优方法,分析 Java 语言特性对性能的影响,给出数据结构选择、I/O 操作及并发同步处理的优化技巧,同时探讨 JVM 安全模型与错误处理机制,助力开发者提升编程能力与程序性能。
10招立竿见影的PyTorch性能优化技巧,让模型训练速度翻倍
本文系统总结了PyTorch性能调优的关键技术,涵盖混合精度训练、PyTorch 2.0编译功能、推理模式优化、Channels-Last内存格式、图优化与变换、cuDNN基准测试、内存使用优化等多个方面。通过实证测试,文章详细分析了各技术的实现细节、优势及适用场景,如混合精度训练可显著提升计算效率和内存利用率,torch.compile()能自动优化代码生成以加速模型运行。此外,还探讨了推理模式的选择、卷积操作优化及模型构建的最佳实践。这些方法结合良好的编码习惯,有助于开发者构建高效、可扩展的深度学习应用。
2025年大模型就业:核心技术趋势、技能要求与职业发展全景解析
随着大语言模型(Large Language Models, LLMs)的技术飞速迭代,人工智能领域正经历从通用对话工具向高度智能化、任务导向的智能体(Agent)系统的深刻转型。到2025年4月,企业对掌握LLM相关技术的专业人才需求持续高涨,核心能力聚焦于检索增强生成(RAG)、智能体任务自动化、模型对齐优化以及多模态融合。本文将全面剖析2025年大模型就业市场的技术演进路径、核心技能要求、行业应用场景、推荐实践项目以及职业发展建议,旨在为从业者提供详尽的职业规划指南,帮助其精准把握行业机遇。
怎么实现实时无延迟的体育电竞动画直播
实时无延迟动画直播需关注技术方案、实现步骤与专业解决方案。技术上可选WebRTC(低至100-500ms延迟,互动性强)、低延迟HLS/CMAF(1-3秒延迟,兼容性好)和RTMP(传统协议,2-5秒延迟)。实现步骤包括采集端设置(高性能编码、稳定网络)、传输优化(CDN节点选择、抗丢包协议)及播放端优化(低延迟模式、自适应码率)。专业方案有云服务(AWS、Azure、阿里云)和专用平台(Millicast、Wowza)。注意完全无延迟不可行,需权衡画质与稳定性,并考虑终端兼容性和成本。代码示例展示了比赛数据处理逻辑,涉及匹配ID、状态、计划与关注等功能。
一文读懂:京东、淘宝、拼多多 API 接口,功能大不同,场景各有招
本文深入解析京东、淘宝、拼多多三大电商巨头的API接口特点与差异。京东API以商品管理、订单处理和物流跟踪见长,适合电商平台及零售商;淘宝API功能丰富,涵盖商品查询、订单管理与用户认证,适用多场景电商业务;拼多多API聚焦社交电商,提供拼团、砍价等特色玩法,助力商家提升曝光与销量。开发者和商家需根据自身需求选择合适的API接口,并关注其安全性与稳定性。随着技术进步,这些API将持续优化,推动电商行业蓬勃发展。
Linux下搭建本地deepseek(附文档下载)
本文介绍了在Linux上搭建本地DeepSeek的步骤。主要涉及安装ollama、下载deepseek模型(1.5b参数版本)和配置ChatboxAI客户端。通过命令行安装ollama后,使用`ollama run deepseek-r1:1.5b`下载模型,并配置环境变量以确保服务正常运行。最后,通过ChatboxAI与模型进行交互。整个过程适合初学者,服务器配置为4核CPU和8GB内存,无GPU,响应速度稍有延迟但可接受。相关资源链接已提供。
当OCR遇见大语言模型:智能文本处理的进化之路
简介:本文探讨光学字符识别(OCR)技术与大语言模型(LLM)结合带来的革新。传统OCR在处理模糊文本、复杂排版时存在局限,而LLM的语义理解、结构解析和多模态处理能力恰好弥补这些不足。文中通过代码实例展示了两者融合在错误校正、文档解析、多语言处理、语义检索及流程革新上的五大优势,并以财务报表解析为例,说明了该技术组合在实际应用中的高效性。此外,文章也展望了未来的技术发展趋势,包括多模态架构、小样本学习和边缘计算部署等方向,预示着文本处理技术正迈向智能认知的新时代。(240字)
2026AI元年:AI 落地范式转移:已被反复验证的产业级实践共识
本文探讨AI从技术竞赛迈向产业落地的关键转型:2026年成规模化应用分水岭。强调落地核心不在模型参数,而在数据治理、工作流重构、RAG工程化、推理可控性、人类协同机制及四大落地准则——场景对齐、知识解耦、架构弹性、迭代闭环。
数据工程视角:为什么公司会有几百个含义模糊的“DAU”指标?
除了提升开发效率、降低资源成本,更能保障决策一致性、赋能业务敏捷分析,并构成未来 AI 应用不可或缺的 AI-Ready 数据底座
【AI大模型面试宝典七】- 训练优化篇
【AI大模型面试宝典】详解知识蒸馏:从软标签、温度机制到特征对齐,涵盖KL散度、黑/白盒蒸馏策略与代码实现,拆解高频面试题,助你精准掌握大模型压缩核心考点,轻松应对技术追问,offer拿到手软!
复旦大学×阿里云产学合作协同育人合作案例
复旦大学联合阿里云开展“天池AI案例100开发”项目,赵卫东团队依托产业级平台构建“理论-实训-实战”教学新体系,开发4大综合性AI案例,覆盖图像识别、自然语言处理等方向。通过MOOC、教材、师资培训多渠道辐射全国,累计惠及超13万学习者,形成可复制的产教融合示范范式,推动人工智能人才培养与产业需求无缝对接。(238字)
云原生时代,“信任”才是开发者的核心基础设施:4个技术维度筑牢增长底盘
在云原生时代,信任已成为技术发展的基础设施。本文深入剖析为何“信任”决定开源项目、API与云产品的成败,并从行为一致、承诺可验证、错误修复、输出稳定四大技术维度,揭示构建长期信任的实操路径,助力开发者实现可持续增长。
构建AI智能体:八十三、当AI开始“失忆“:深入理解和预防模型衰老与数据漂移
AI模型会因数据分布变化和时间推移而性能下降,即“模型衰老”与“数据漂移”。如同知识过时,旧模型难以适应新环境,导致预测不准。需通过PSI、KS等指标监测,并定期重训练以保持其有效性。
让AI真正读懂长文本的秘密武器
通义实验室推出QwenLong-L1.5,基于Qwen3-30B-A3B打造的长文本推理专家。通过高质量多跳数据合成、稳定强化学习算法与突破窗口限制的记忆框架,系统性解决长文本“学不好、用不了”难题,在多跳推理、超长上下文等任务中媲美GPT-5与Gemini。
大数据与机器学习
大数据领域前沿技术分享与交流,这里不止有技术干货、学习心得、企业实践、社区活动,还有未来。