【智能优化算法 】基于适应度相关优化器求解单目标优化问题附matlab代码

本文涉及的产品
网络型负载均衡 NLB,每月750个小时 15LCU
传统型负载均衡 CLB,每月750个小时 15LCU
应用型负载均衡 ALB,每月750个小时 15LCU
简介: 【智能优化算法 】基于适应度相关优化器求解单目标优化问题附matlab代码

 1 内容介绍

在本文中,提出了一种新的群体智能算法,称为适应度依赖优化器(FDO)。蜂拥而至的繁殖过程及其集体决策启发了这种算法。它与蜜蜂算法或人工蜂群算法没有算法联系。值得一提的是,FDO 被认为是一种基于粒子群优化(PSO)的算法,它通过增加速度(步速)来更新搜索代理的位置。但是,FDO 计算速度的方式不同;它使用问题适应度函数值来产生权重,这些权重在探索和利用阶段指导搜索代理。在本文中,介绍了 FDO 算法,并解释了该想法背后的动机。此外,在一组 19 个经典基准测试函数上对 FDO 进行了测试,并将结果与 PSO、遗传算法(GA)和蜻蜓算法(DA)三种著名算法进行了比较;此外,FDO 在 IEEE 进化计算基准测试函数大会(CEC-C06,2019 竞赛)[1] 上进行了测试。将结果与三种现代算法进行比较:(DA)、鲸鱼优化算法 (WOA) 和 salp swarm 算法 (SSA)。 FDO 结果在大多数情况下显示出更好的性能,而在其他情况下则显示出比较结果。此外,使用 Wilcoxon 秩和检验对结果进行统计检验,以显示结果的显着性。同样,探索和开发阶段的 FDO 稳定性也使用不同的标准测量进行验证和性能证明。最后,将 FDO 应用到实际应用中作为其可行性的证据。

2 仿真代码

% 此函数包含基准的完整信息和实现

% 文中表1、表2、表3中的函数

% lb是下限: lb=[lb_1,lb_2,...,lb_d]

% up是上限: ub=[ub_1,ub_2,...,ub_d]

% dim是变量的数量(问题的维度)

function [lb, ub, dim, fobj] = Get_Functions_details(F)

switch F

   case 'F1'

       % Sphere

       fobj = @F1;

       lb=-100;

       ub=100;

       dim=30;

       

   case 'F2'

       % Schwefel 2.22

       fobj = @F2;

       lb=-10;

       ub=10;

       dim=50;

       

   case 'F3'

       % Schwefel 1.2

       fobj = @F3;

       lb=-100;

       ub=100;

       dim=100;

       

   case 'F4'

       fobj = @F4;

       lb=-100;

       ub=100;

       dim=30;

       

   case 'F5'

       fobj = @F5;

       lb=-30;

       ub=30;

       dim=30;

       

   case 'F6'

       fobj = @F6;

       lb=-100;

       ub=100;

       dim=30;

       

   case 'F7'

       fobj = @F7;

       lb=-1.28;

       ub=1.28;

       dim=30;

       

   case 'F8'

       fobj = @F8;

       lb=-500;

       ub=500;

       dim=30;

       

   case 'F9'

       fobj = @F9;

       lb=-5.12;

       ub=5.12;

       dim=30;

       

   case 'F10'

       fobj = @F10;

       lb=-32;

       ub=32;

       dim=30;

       

   case 'F11'

       fobj = @F11;

       lb=-600;

       ub=600;

       dim=30;

       

   case 'F12'

       fobj = @F12;

       lb=-50;

       ub=50;

       dim=30;

       

   case 'F13'

       fobj = @F13;

       lb=-50;

       ub=50;

       dim=30;

       

   case 'F14'

       fobj = @F14;

       lb=-65.536;

       ub=65.536;

       dim=2;

       

   case 'F15'

       fobj = @F15;

       lb=-5;

       ub=5;

       dim=4;

       

   case 'F16'

       fobj = @F16;

       lb=-5;

       ub=5;

       dim=2;

       

   case 'F17'

       fobj = @F17;

       lb=[-5,0];

       ub=[10,15];

       dim=2;

       

   case 'F18'

       fobj = @F18;

       lb=-2;

       ub=2;

       dim=2;

       

   case 'F19'

       fobj = @F19;

       lb=0;

       ub=1;

       dim=3;

       

   case 'F20'

       fobj = @F20;

       lb=0;

       ub=1;

       dim=6;    

       

   case 'F21'

       fobj = @F21;

       lb=0;

       ub=10;

       dim=4;    

       

   case 'F22'

       fobj = @F22;

       lb=0;

       ub=10;

       dim=4;    

       

   case 'F23'

       fobj = @F23;

       lb=0;

       ub=10;

       dim=4;            

end

end

% F1

function o = F1(x)

o=sum(x.^2);

end

% F2

function o = F2(x)

o=sum(abs(x))+prod(abs(x));

end

% F3

function o = F3(x)

dim=size(x,2);

o=0;

for i=1:dim

   o=o+sum(x(1:i))^2;

end

end

% F4

function o = F4(x)

o=max(abs(x));

end

% F5

function o = F5(x)

dim=size(x,2);

o=sum(100*(x(2:dim)-(x(1:dim-1).^2)).^2+(x(1:dim-1)-1).^2);

end

% F6

function o = F6(x)

o=sum(abs((x+.5)).^2);

end

% F7

function o = F7(x)

dim=size(x,2);

o=sum([1:dim].*(x.^4))+rand;

end

% F8

function o = F8(x)

o=sum(-x.*sin(sqrt(abs(x))));

end

% F9

function o = F9(x)

dim=size(x,2);

o=sum(x.^2-10*cos(2*pi.*x))+10*dim;

end

% F10

function o = F10(x)

dim=size(x,2);

o=-20*exp(-.2*sqrt(sum(x.^2)/dim))-exp(sum(cos(2*pi.*x))/dim)+20+exp(1);

end

% F11

function o = F11(x)

dim=size(x,2);

o=sum(x.^2)/4000-prod(cos(x./sqrt([1:dim])))+1;

end

% F12

function o = F12(x)

dim=size(x,2);

o=(pi/dim)*(10*((sin(pi*(1+(x(1)+1)/4)))^2)+sum((((x(1:dim-1)+1)./4).^2).*...

(1+10.*((sin(pi.*(1+(x(2:dim)+1)./4)))).^2))+((x(dim)+1)/4)^2)+sum(Ufun(x,10,100,4));

end

% F13

function o = F13(x)

dim=size(x,2);

o=.1*((sin(3*pi*x(1)))^2+sum((x(1:dim-1)-1).^2.*(1+(sin(3.*pi.*x(2:dim))).^2))+...

((x(dim)-1)^2)*(1+(sin(2*pi*x(dim)))^2))+sum(Ufun(x,5,100,4));

end

% F14

function o = F14(x)

aS=[-32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32;,...

-32 -32 -32 -32 -32 -16 -16 -16 -16 -16 0 0 0 0 0 16 16 16 16 16 32 32 32 32 32];

for j=1:25

   bS(j)=sum((x'-aS(:,j)).^6);

end

o=(1/500+sum(1./([1:25]+bS))).^(-1);

end

% F15

function o = F15(x)

aK=[.1957 .1947 .1735 .16 .0844 .0627 .0456 .0342 .0323 .0235 .0246];

bK=[.25 .5 1 2 4 6 8 10 12 14 16];bK=1./bK;

o=sum((aK-((x(1).*(bK.^2+x(2).*bK))./(bK.^2+x(3).*bK+x(4)))).^2);

end

% F16

function o = F16(x)

o=4*(x(1)^2)-2.1*(x(1)^4)+(x(1)^6)/3+x(1)*x(2)-4*(x(2)^2)+4*(x(2)^4);

end

% F17

function o = F17(x)

o=(x(2)-(x(1)^2)*5.1/(4*(pi^2))+5/pi*x(1)-6)^2+10*(1-1/(8*pi))*cos(x(1))+10;

end

% F18

function o = F18(x)

o=(1+(x(1)+x(2)+1)^2*(19-14*x(1)+3*(x(1)^2)-14*x(2)+6*x(1)*x(2)+3*x(2)^2))*...

   (30+(2*x(1)-3*x(2))^2*(18-32*x(1)+12*(x(1)^2)+48*x(2)-36*x(1)*x(2)+27*(x(2)^2)));

end

% F19

function o = F19(x)

aH=[3 10 30;.1 10 35;3 10 30;.1 10 35];cH=[1 1.2 3 3.2];

pH=[.3689 .117 .2673;.4699 .4387 .747;.1091 .8732 .5547;.03815 .5743 .8828];

o=0;

for i=1:4

   o=o-cH(i)*exp(-(sum(aH(i,:).*((x-pH(i,:)).^2))));

end

end

% F20

function o = F20(x)

aH=[10 3 17 3.5 1.7 8;.05 10 17 .1 8 14;3 3.5 1.7 10 17 8;17 8 .05 10 .1 14];

cH=[1 1.2 3 3.2];

pH=[.1312 .1696 .5569 .0124 .8283 .5886;.2329 .4135 .8307 .3736 .1004 .9991;...

.2348 .1415 .3522 .2883 .3047 .6650;.4047 .8828 .8732 .5743 .1091 .0381];

o=0;

for i=1:4

   o=o-cH(i)*exp(-(sum(aH(i,:).*((x-pH(i,:)).^2))));

end

end

% F21

function o = F21(x)

aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];

cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];

o=0;

for i=1:5

   o=o-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);

end

end

% F22

function o = F22(x)

aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];

cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];

o=0;

for i=1:7

   o=o-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);

end

end

% F23

function o = F23(x)

aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];

cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];

o=0;

for i=1:10

   o=o-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);

end

end

function o=Ufun(x,a,k,m)

o=k.*((x-a).^m).*(x>a)+k.*((-x-a).^m).*(x<(-a));

end

3 运行结果

image.gif编辑

image.gif编辑

4 参考文献

[1] Abbas D K ,  Rashid T A ,  Bacanin K , et al. Using Fitness Dependent Optimizer for Training Multi-layer Perceptron[J].  2022.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。

相关文章
|
3天前
|
算法
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
|
1天前
|
传感器 算法
基于GA遗传算法的多机无源定位系统GDOP优化matlab仿真
本项目基于遗传算法(GA)优化多机无源定位系统的GDOP,使用MATLAB2022A进行仿真。通过遗传算法的选择、交叉和变异操作,迭代优化传感器配置,最小化GDOP值,提高定位精度。仿真输出包括GDOP优化结果、遗传算法收敛曲线及三维空间坐标点分布图。核心程序实现了染色体编码、适应度评估、遗传操作等关键步骤,最终展示优化后的传感器布局及其性能。
|
5天前
|
传感器 算法 物联网
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。
|
5天前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
|
4天前
|
算法 数据安全/隐私保护 计算机视觉
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
|
1月前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
1月前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
148 68
|
1月前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
3天前
|
算法 数据可视化 数据安全/隐私保护
一级倒立摆平衡控制系统MATLAB仿真,可显示倒立摆平衡动画,对比极点配置,线性二次型,PID,PI及PD五种算法
本课题基于MATLAB对一级倒立摆控制系统进行升级仿真,增加了PI、PD控制器,并对比了极点配置、线性二次型、PID、PI及PD五种算法的控制效果。通过GUI界面显示倒立摆动画和控制输出曲线,展示了不同控制器在偏转角和小车位移变化上的性能差异。理论部分介绍了倒立摆系统的力学模型,包括小车和杆的动力学方程。核心程序实现了不同控制算法的选择与仿真结果的可视化。
31 15
|
2天前
|
机器学习/深度学习 算法 安全
基于深度学习的路面裂缝检测算法matlab仿真
本项目基于YOLOv2算法实现高效的路面裂缝检测,使用Matlab 2022a开发。完整程序运行效果无水印,核心代码配有详细中文注释及操作视频。通过深度学习技术,将目标检测转化为回归问题,直接预测裂缝位置和类别,大幅提升检测效率与准确性。适用于实时检测任务,确保道路安全维护。 简介涵盖了算法理论、数据集准备、网络训练及检测过程,采用Darknet-19卷积神经网络结构,结合随机梯度下降算法进行训练。

热门文章

最新文章