八个常见的机器学习算法的计算复杂度总结

简介: 计算的复杂度是一个特定算法在运行时所消耗的计算资源(时间和空间)的度量。

计算的复杂度是一个特定算法在运行时所消耗的计算资源(时间和空间)的度量。
6745bd325860bff74f5951085a6b5355f7f218.png

计算复杂度又分为两类:

1、时间复杂度
时间复杂度不是测量一个算法或一段代码在某个机器或者条件下运行所花费的时间。时间复杂度一般指时间复杂性,时间复杂度是一个函数,它定性描述该算法的运行时间,允许我们在不运行它们的情况下比较不同的算法。例如,带有O(n)的算法总是比O(n²)表现得更好,因为它的增长率小于O(n²)。
2、空间复杂度
就像时间复杂度是一个函数一样,空间复杂度也是如此。 从概念上讲,它与时间复杂度相同,只需将时间替换为空间即可。 维基百科将空间复杂度定义为:

算法或计算机程序的空间复杂度是解决计算问题实例所需的存储空间量,以特征数量作为输入的函数。

下面我们整理了一些常见的机器学习算法的计算复杂度。

1、线性回归
n= 训练样本数,f = 特征数
训练时间复杂度:O(f²n+f³)
预测时间复杂度:O(f)
运行时空间复杂度:O(f)
2、逻辑回归:
n= 训练样本数,f = 特征数
训练时间复杂度:O(f*n)
预测时间复杂度:O(f)
运行时空间复杂度:O(f)
3、支持向量机:
n= 训练样本数,f = 特征数,s= 支持向量的数量
训练时间复杂度:O(n²) 到 O(n³),训练时间复杂度因内核不同而不同。
预测时间复杂度:O(f) 到 O(sf):线性核是 O(f),RBF 和多项式是 O(sf)
运行时空间复杂度:O(s)
4、朴素贝叶斯:
n= 训练样本数,f = 特征数,c = 分类的类别数
训练时间复杂度:O(nfc)
预测时间复杂度:O(c*f)
运行时空间复杂度:O(c*f)
5、决策树:
n= 训练样本数,f = 特征数,d = 树的深度,p = 节点数
训练时间复杂度:O(nlog(n)f)
预测时间复杂度:O(d)
运行时空间复杂度:O(p)
6、随机森林:
n= 训练样本数,f = 特征数,k = 树的数量,p=树中的节点数,d = 树的深度
训练时间复杂度:O(nlog(n)f*k)
预测时间复杂度:O(d*k)
运行时空间复杂度:O(p*k)
7、K近邻:
n= 训练样本数,f = 特征数,k= 近邻数

Brute:
训练时间复杂度:O(1)
预测时间复杂度:O(nf+kf)
运行时空间复杂度:O(n*f)
kd-tree:
训练时间复杂度:O(fnlog(n))
预测时间复杂度:O(k*log(n))
运行时空间复杂度:O(n*f)
8、K-means 聚类:
n= 训练样本数,f = 特征数,k= 簇数,i = 迭代次数
训练时间复杂度:O(nfk*i)
运行时空间复杂度:O(nf+kf)

相关文章
|
1月前
|
存储 机器学习/深度学习 编解码
双选择性信道下正交啁啾分复用(OCDM)的低复杂度均衡算法研究——论文阅读
本文提出统一相位正交啁啾分复用(UP-OCDM)方案,利用循环矩阵特性设计两种低复杂度均衡算法:基于带状近似的LDL^H分解和基于BEM的迭代LSQR,将复杂度由$O(N^3)$降至$O(NQ^2)$或$O(iNM\log N)$,在双选择性信道下显著提升高频谱效率与抗多普勒性能。
168 0
双选择性信道下正交啁啾分复用(OCDM)的低复杂度均衡算法研究——论文阅读
|
2月前
|
算法 机器人
基于SOA海鸥优化算法的PID控制器最优控制参数计算matlab仿真
本课题研究基于海鸥优化算法(SOA)优化PID控制器参数的方法,通过MATLAB仿真对比传统PID控制效果。利用SOA算法优化PID的kp、ki、kd参数,以积分绝对误差(IAE)为适应度函数,提升系统响应速度与稳定性。仿真结果表明,SOA优化的PID控制器在阶跃响应和误差控制方面均优于传统方法,具有更快的收敛速度和更强的全局寻优能力,适用于复杂系统的参数整定。
|
1月前
|
机器学习/深度学习 数据采集 人工智能
【机器学习算法篇】K-近邻算法
K近邻(KNN)是一种基于“物以类聚”思想的监督学习算法,通过计算样本间距离,选取最近K个邻居投票决定类别。支持多种距离度量,如欧式、曼哈顿、余弦相似度等,适用于分类与回归任务。结合Scikit-learn可高效实现,需合理选择K值并进行数据预处理,常用于鸢尾花分类等经典案例。(238字)
|
6月前
|
算法 JavaScript 数据安全/隐私保护
基于GA遗传优化的最优阈值计算认知异构网络(CHN)能量检测算法matlab仿真
本内容介绍了一种基于GA遗传优化的阈值计算方法在认知异构网络(CHN)中的应用。通过Matlab2022a实现算法,完整代码含中文注释与操作视频。能量检测算法用于感知主用户信号,其性能依赖检测阈值。传统固定阈值方法易受噪声影响,而GA算法通过模拟生物进化,在复杂环境中自动优化阈值,提高频谱感知准确性,增强CHN的通信效率与资源利用率。预览效果无水印,核心程序部分展示,适合研究频谱感知与优化算法的学者参考。
|
6月前
|
机器学习/深度学习 数据采集 人工智能
20分钟掌握机器学习算法指南
在短短20分钟内,从零开始理解主流机器学习算法的工作原理,掌握算法选择策略,并建立对神经网络的直观认识。本文用通俗易懂的语言和生动的比喻,帮助你告别算法选择的困惑,轻松踏入AI的大门。
|
7月前
|
机器学习/深度学习 存储 Kubernetes
【重磅发布】AllData数据中台核心功能:机器学习算法平台
杭州奥零数据科技有限公司成立于2023年,专注于数据中台业务,维护开源项目AllData并提供商业版解决方案。AllData提供数据集成、存储、开发、治理及BI展示等一站式服务,支持AI大模型应用,助力企业高效利用数据价值。
|
8月前
|
机器学习/深度学习 人工智能 自然语言处理
AI训练师入行指南(三):机器学习算法和模型架构选择
从淘金到雕琢,将原始数据炼成智能珠宝!本文带您走进数字珠宝工坊,用算法工具打磨数据金砂。从基础的经典算法到精密的深度学习模型,结合电商、医疗、金融等场景实战,手把手教您选择合适工具,打造价值连城的智能应用。掌握AutoML改装套件与模型蒸馏术,让复杂问题迎刃而解。握紧算法刻刀,为数字世界雕刻文明!
302 6
|
8月前
|
算法 数据安全/隐私保护
基于Big-Bang-Big-Crunch(BBBC)算法的目标函数最小值计算matlab仿真
该程序基于Big-Bang-Big-Crunch (BBBC)算法,在MATLAB2022A中实现目标函数最小值的计算与仿真。通过模拟宇宙大爆炸和大收缩过程,算法在解空间中搜索最优解。程序初始化随机解集,经过扩张和收缩阶段逐步逼近全局最优解,并记录每次迭代的最佳适应度。最终输出最佳解及其对应的目标函数最小值,并绘制收敛曲线展示优化过程。 核心代码实现了主循环、粒子位置更新、适应度评估及最优解更新等功能。程序运行后无水印,提供清晰的结果展示。
206 14
|
9月前
|
人工智能 编解码 算法
使用 PAI-DSW x Free Prompt Editing图像编辑算法,开发个人AIGC绘图小助理
使用 PAI-DSW x Free Prompt Editing图像编辑算法,开发个人AIGC绘图小助理
216 0
|
1月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
195 0

热门文章

最新文章