八个常见的机器学习算法的计算复杂度总结

简介: 计算的复杂度是一个特定算法在运行时所消耗的计算资源(时间和空间)的度量。

计算的复杂度是一个特定算法在运行时所消耗的计算资源(时间和空间)的度量。
6745bd325860bff74f5951085a6b5355f7f218.png

计算复杂度又分为两类:

1、时间复杂度
时间复杂度不是测量一个算法或一段代码在某个机器或者条件下运行所花费的时间。时间复杂度一般指时间复杂性,时间复杂度是一个函数,它定性描述该算法的运行时间,允许我们在不运行它们的情况下比较不同的算法。例如,带有O(n)的算法总是比O(n²)表现得更好,因为它的增长率小于O(n²)。
2、空间复杂度
就像时间复杂度是一个函数一样,空间复杂度也是如此。 从概念上讲,它与时间复杂度相同,只需将时间替换为空间即可。 维基百科将空间复杂度定义为:

算法或计算机程序的空间复杂度是解决计算问题实例所需的存储空间量,以特征数量作为输入的函数。

下面我们整理了一些常见的机器学习算法的计算复杂度。

1、线性回归
n= 训练样本数,f = 特征数
训练时间复杂度:O(f²n+f³)
预测时间复杂度:O(f)
运行时空间复杂度:O(f)
2、逻辑回归:
n= 训练样本数,f = 特征数
训练时间复杂度:O(f*n)
预测时间复杂度:O(f)
运行时空间复杂度:O(f)
3、支持向量机:
n= 训练样本数,f = 特征数,s= 支持向量的数量
训练时间复杂度:O(n²) 到 O(n³),训练时间复杂度因内核不同而不同。
预测时间复杂度:O(f) 到 O(sf):线性核是 O(f),RBF 和多项式是 O(sf)
运行时空间复杂度:O(s)
4、朴素贝叶斯:
n= 训练样本数,f = 特征数,c = 分类的类别数
训练时间复杂度:O(nfc)
预测时间复杂度:O(c*f)
运行时空间复杂度:O(c*f)
5、决策树:
n= 训练样本数,f = 特征数,d = 树的深度,p = 节点数
训练时间复杂度:O(nlog(n)f)
预测时间复杂度:O(d)
运行时空间复杂度:O(p)
6、随机森林:
n= 训练样本数,f = 特征数,k = 树的数量,p=树中的节点数,d = 树的深度
训练时间复杂度:O(nlog(n)f*k)
预测时间复杂度:O(d*k)
运行时空间复杂度:O(p*k)
7、K近邻:
n= 训练样本数,f = 特征数,k= 近邻数

Brute:
训练时间复杂度:O(1)
预测时间复杂度:O(nf+kf)
运行时空间复杂度:O(n*f)
kd-tree:
训练时间复杂度:O(fnlog(n))
预测时间复杂度:O(k*log(n))
运行时空间复杂度:O(n*f)
8、K-means 聚类:
n= 训练样本数,f = 特征数,k= 簇数,i = 迭代次数
训练时间复杂度:O(nfk*i)
运行时空间复杂度:O(nf+kf)

目录
打赏
0
0
0
0
26
分享
相关文章
AI训练师入行指南(三):机器学习算法和模型架构选择
从淘金到雕琢,将原始数据炼成智能珠宝!本文带您走进数字珠宝工坊,用算法工具打磨数据金砂。从基础的经典算法到精密的深度学习模型,结合电商、医疗、金融等场景实战,手把手教您选择合适工具,打造价值连城的智能应用。掌握AutoML改装套件与模型蒸馏术,让复杂问题迎刃而解。握紧算法刻刀,为数字世界雕刻文明!
48 6
基于Big-Bang-Big-Crunch(BBBC)算法的目标函数最小值计算matlab仿真
该程序基于Big-Bang-Big-Crunch (BBBC)算法,在MATLAB2022A中实现目标函数最小值的计算与仿真。通过模拟宇宙大爆炸和大收缩过程,算法在解空间中搜索最优解。程序初始化随机解集,经过扩张和收缩阶段逐步逼近全局最优解,并记录每次迭代的最佳适应度。最终输出最佳解及其对应的目标函数最小值,并绘制收敛曲线展示优化过程。 核心代码实现了主循环、粒子位置更新、适应度评估及最优解更新等功能。程序运行后无水印,提供清晰的结果展示。
基于机器学习的人脸识别算法matlab仿真,对比GRNN,PNN,DNN以及BP四种网络
本项目展示了人脸识别算法的运行效果(无水印),基于MATLAB2022A开发。核心程序包含详细中文注释及操作视频。理论部分介绍了广义回归神经网络(GRNN)、概率神经网络(PNN)、深度神经网络(DNN)和反向传播(BP)神经网络在人脸识别中的应用,涵盖各算法的结构特点与性能比较。
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
577 13
机器学习算法的优化与改进:提升模型性能的策略与方法
使用 PAI-DSW x Free Prompt Editing图像编辑算法,开发个人AIGC绘图小助理
使用 PAI-DSW x Free Prompt Editing图像编辑算法,开发个人AIGC绘图小助理
CCS 2024:如何严格衡量机器学习算法的隐私泄露? ETH有了新发现
在2024年CCS会议上,苏黎世联邦理工学院的研究人员提出,当前对机器学习隐私保护措施的评估可能存在严重误导。研究通过LiRA攻击评估了五种经验性隐私保护措施(HAMP、RelaxLoss、SELENA、DFKD和SSL),发现现有方法忽视最脆弱数据点、使用较弱攻击且未与实际差分隐私基线比较。结果表明这些措施在更强攻击下表现不佳,而强大的差分隐私基线则提供了更好的隐私-效用权衡。
82 14
解锁机器学习的新维度:元学习的算法与应用探秘
元学习作为一个重要的研究领域,正逐渐在多个应用领域展现其潜力。通过理解和应用元学习的基本算法,研究者可以更好地解决在样本不足或任务快速变化的情况下的学习问题。随着研究的深入,元学习有望在人工智能的未来发展中发挥更大的作用。
Java中的算法优化与复杂度分析
在Java开发中,理解和优化算法的时间复杂度和空间复杂度是提升程序性能的关键。通过合理选择数据结构、避免重复计算、应用分治法等策略,可以显著提高算法效率。在实际开发中,应该根据具体需求和场景,选择合适的优化方法,从而编写出高效、可靠的代码。
81 6
|
4月前
|
PAI下面的gbdt、xgboost、ps-smart 算法如何优化?
设置gbdt 、xgboost等算法的样本和特征的采样率
145 2
利用机器学习算法改善电商推荐系统的效率
电商行业日益竞争激烈,提升用户体验成为关键。本文将探讨如何利用机器学习算法优化电商推荐系统,通过分析用户行为数据和商品信息,实现个性化推荐,从而提高推荐效率和准确性。
305 14

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等