Python技术知识获取数据并进行可视化(以火锅店为例 六一到了 快带对象去吃火锅吧)

简介: Python技术知识获取数据并进行可视化(以火锅店为例 六一到了 快带对象去吃火锅吧)

Python技术知识获取数据并进行可视化(以火锅店为例 六一到了 快带对象去吃火锅吧)

今天六一了 带着对象去吃火锅吧

想吃火锅不知道怎么选,我用python抓取全国火锅店做top10分析

目录

1、数据溯源
1.1 打开地图搜索,可以看到地图上能展示很多店铺数据,那么数据从哪里来的呢?
1.2 网络助手调试
2、编写爬虫程序
2.1 导入相关库
2.2 请求数据
2.3以下为店铺部分数据
3、数据存放到表格
4、数据分析
5、湖南火锅店数量分布
6、全国火锅店数量分布
总结

注意: 本文数据来自于某度

一 数据溯源
1 打开地图搜索,可以看到地图上能展示很多店铺数据,那么数据从哪里来的呢?

2 网络助手调试
打开网络调试助手,可以看到这里面就有对应店铺的数据,数据的传输都是通过这个API来交互的,可以通过爬虫请求这个接口获取需要的数据

二、编写爬虫程序
1 导入相关库

import requests,openpyxl
from numpy import mean
from pyecharts import options as opts
from pyecharts.charts import Map
2 请求数据
下面开始编写请求数据代码(请求时记得带上headers)

headers = {

    "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36",
    'Referer':'https://map.baidu.com/@12949550.923158279,3712445.9716704674,6.28z',
    "Cookie":";"你的cookie",

}
url = "https://ditu.baidu.com/?newmap=1&reqflag=pcmap&biz=1&from=webmap&da_par=direct&pcevaname=pc4.1&qt=s&da_src=searchBox.button&wd=%E7%81%AB%E9%94%85%E5%BA%97&c=158&src=0&wd2=&pn=0&sug=0&l=13&b=(12553849.45,3237935.24;12570777.45,3265551.24)&from=webmap&biz_forward={%22scaler%22:1,%22styles%22:%22pl%22}&sug_forward=&auth=P65Ox7I43B3Ta0COBJTb5D4NVW9RBQ9TuxLETRBxBLLty9iRyki%3DxXwvYgP1PcGCgYvjPuVtvYgPMGvgWv%40uVtvYgPPxRYuVtvYgP%40vYZcvWPCuVtvYgP%40ZPcPPuVtvYgPhPPyheuVtvhgMuxVVtcvY1SGpuTtGKD%3DCCGYuxtE20w5V198P8J9v7u1cv3uxt2dd9dv7uPWv3Guxt58Jv7uPYIUvhgMZSguxzBEHLNRTVtcEWe1aDYyuVt%40ZPuzteL1wWveuxtf0wd0vyMFUSCy7OAupt66FKEu%3D%3D8xX&seckey=vHBTJ4tdi68MW8qWw%2BjU2KFSTFNFo3ItXO6ack3ti8w%3D%2CAp6F2yrR-L11fgqtb_BCcR__vsbaezgdq3dBSEVigT5dYmDiJD8CMaToeS_RfR0pFYByyqzM_Fym7UZvX8dmUA_npbBsJiTpMFwIgVQ5pFQ4nDgupLc5wRg_xqikNzFJMAI55erqBKkbkNQqXfrs9hl6futZVDWgi_jFWBfUDhiNyCGARzZeP0UzmuY9sAJX&device_ratio=1&tn=B_NORMAL_MAP&nn=0&u_loc=12568222,3256533&ie=utf-8&t=1649831407880&newfrom=zhuzhan_webmap"
response = requests.get(url,headers=headers).json()

这里的cookie可以在浏览器network中复制即可。

通过返回的json数据可知道,我们的目标数据在content中,里面是列表数据是店铺资源

(overall_rating是评分,phone是店家电话,price是均价,name是店铺名称)

2.3以下为店铺部分数据

res = session.get(url, headers=headers)

    if res.status_code == 200:
        items = res.json()
        for i in items.get('content')[0:10]:
            ext = i.get('ext').get('detail_info')
            overall_rating = ext.get('overall_rating')
            phone = ext.get('phone')
            price = ext.get('price')
            name = ext.get('name')
            print(overall_rating,phone,price,name)





3、数据存放到表格

work = openpyxl.Workbook()
ws = work.create_sheet(title='省数据', index=0)
ws.append(['评分', '联系方式', '价格', '店名'])

4、数据分析
根据值评分进行排行统计TOP10店铺

5、湖南火锅店数量分布
为了绘制城市的分布图,选择了湖南省为例进行绘制

(如果要绘制全国的所有城市,那样出来的图密密麻麻,不美观)

c2 = (

    Map()
        .add(f"湖南{wd}店数量各市统计", bb, "湖南")
        .set_global_opts(
        title_opts=opts.TitleOpts(title=f"湖南{wd}店数量分布"), visualmap_opts=opts.VisualMapOpts()
    )
        .render(f"湖南{wd}店数量分布.html")
)
return c1,c2


6、全国火锅店数量分布

attr = data['省份'].tolist()
value = data['数量'].tolist()
name = []
for i in attr:

if "省" in i:
    name.append(i.replace("省",""))
else:
    name.append(i)

from pyecharts import options as opts
from pyecharts.charts import Map
from pyecharts.faker import Faker
c = (

Map()
    .add("数量", [list(z) for z in zip(name, value)], "china")
    .set_global_opts(title_opts=opts.TitleOpts(title="全国火锅店数量分布情况"))
    .render("全国火锅店数量分布情况.html")

)

目录
相关文章
|
1月前
|
数据采集 数据可视化 数据挖掘
利用Python自动化处理Excel数据:从基础到进阶####
本文旨在为读者提供一个全面的指南,通过Python编程语言实现Excel数据的自动化处理。无论你是初学者还是有经验的开发者,本文都将帮助你掌握Pandas和openpyxl这两个强大的库,从而提升数据处理的效率和准确性。我们将从环境设置开始,逐步深入到数据读取、清洗、分析和可视化等各个环节,最终实现一个实际的自动化项目案例。 ####
|
7天前
|
数据采集 存储 缓存
如何使用缓存技术提升Python爬虫效率
如何使用缓存技术提升Python爬虫效率
|
8天前
|
数据采集 Web App开发 监控
Python爬虫:爱奇艺榜单数据的实时监控
Python爬虫:爱奇艺榜单数据的实时监控
|
15天前
|
分布式计算 大数据 数据处理
技术评测:MaxCompute MaxFrame——阿里云自研分布式计算框架的Python编程接口
随着大数据和人工智能技术的发展,数据处理的需求日益增长。阿里云推出的MaxCompute MaxFrame(简称“MaxFrame”)是一个专为Python开发者设计的分布式计算框架,它不仅支持Python编程接口,还能直接利用MaxCompute的云原生大数据计算资源和服务。本文将通过一系列最佳实践测评,探讨MaxFrame在分布式Pandas处理以及大语言模型数据处理场景中的表现,并分析其在实际工作中的应用潜力。
51 2
|
16天前
|
存储 数据处理 Python
Python如何显示对象的某个属性的所有值
本文介绍了如何在Python中使用`getattr`和`hasattr`函数来访问和检查对象的属性。通过这些工具,可以轻松遍历对象列表并提取特定属性的所有值,适用于数据处理和分析任务。示例包括获取对象列表中所有书籍的作者和检查动物对象的名称属性。
25 2
|
27天前
|
数据可视化 编译器 Python
Manim:数学可视化的强大工具 | python小知识
Manim(Manim Community Edition)是由3Blue1Brown的Grant Sanderson开发的数学动画引擎,专为数学和科学可视化设计。它结合了Python的灵活性与LaTeX的精确性,支持多领域的内容展示,能生成清晰、精确的数学动画,广泛应用于教育视频制作。安装简单,入门容易,适合教育工作者和编程爱好者使用。
170 7
|
29天前
|
数据采集 分布式计算 大数据
构建高效的数据管道:使用Python进行ETL任务
在数据驱动的世界中,高效地处理和移动数据是至关重要的。本文将引导你通过一个实际的Python ETL(提取、转换、加载)项目,从概念到实现。我们将探索如何设计一个灵活且可扩展的数据管道,确保数据的准确性和完整性。无论你是数据工程师、分析师还是任何对数据处理感兴趣的人,这篇文章都将成为你工具箱中的宝贵资源。
|
30天前
|
缓存 监控 算法
Python内存管理:掌握对象的生命周期与垃圾回收机制####
本文深入探讨了Python中的内存管理机制,特别是对象的生命周期和垃圾回收过程。通过理解引用计数、标记-清除及分代收集等核心概念,帮助开发者优化程序性能,避免内存泄漏。 ####
41 3
|
2月前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
81 0
|
2月前
|
机器学习/深度学习 数据采集 数据挖掘
解锁 Python 数据分析新境界:Pandas 与 NumPy 高级技巧深度剖析
Pandas 和 NumPy 是 Python 中不可或缺的数据处理和分析工具。本文通过实际案例深入剖析了 Pandas 的数据清洗、NumPy 的数组运算、结合两者进行数据分析和特征工程,以及 Pandas 的时间序列处理功能。这些高级技巧能够帮助我们更高效、准确地处理和分析数据,为决策提供支持。
50 2