③机器学习推荐算法之关联规则Apriori与FP-Growth算法详解

简介: 机器学习推荐算法之关联规则Apriori与FP-Growth算法详解




apriori代码案例

# 安装mlxtend : pip install mlxtend
import pandas as pd
from mlxtend.preprocessing import TransactionEncoder
from mlxtend.frequent_patterns import apriori,fpgrowth,association_rules
# 1. 获取数据(二维列表) list of lists
data_set = [['l1', 'l2', 'l5'],
            ['l2', 'l4'],
            ['l2', 'l3'],
            ['l1', 'l2', 'l4'],
            ['l1', 'l3'],
            ['l2', 'l3'],
            ['l1', 'l3'],
            ['l1', 'l2', 'l3', 'l5'],
            ['l1', 'l2', 'l3']]
# 2. 构造项集bool矩阵(One-Hot数据集)
# 使用事务编码器构造One-hot矩阵
encoder = TransactionEncoder()
onehot_data = encoder.fit_transform(data_set)
df = pd.DataFrame(onehot_data, columns=encoder.columns_) # T-F矩阵
#df = pd.DataFrame(onehot_data.astype('int'), columns=encoder.columns_)  # 0-1矩阵
# 2. 生成频繁项集
frequent_itemsets = apriori(df,min_support=0.2, use_colnames=True)
print(frequent_itemsets)
# 3. 生成关联规则
associate_rules = association_rules(frequent_itemsets,metric="confidence",min_threshold=0.6)
print(associate_rules)
# coding:utf-8
class treeNode: # 定义树节点类
    def __init__(self, nameValue, numOccur, parentNode):
        self.name = nameValue
        self.count = numOccur
        self.nodeLink = None
        self.parent = parentNode
        self.children = {}
    def inc(self, numOccur):
        self.count += numOccur
    def disp(self, ind=1):
        print('  '*ind, self.name, ' ', self.count)
        for child in self.children.values():
            child.disp(ind+1)
def updateHeader(nodeToTest, targetNode):
    while nodeToTest.nodeLink != None:
        nodeToTest = nodeToTest.nodeLink
    nodeToTest.nodeLink = targetNode
def updateFPtree(items, inTree, headerTable, count):
    if items[0] in inTree.children:
        # 判断items的第一个结点是否已作为子结点
        inTree.children[items[0]].inc(count)
    else:
        # 创建新的分支
        inTree.children[items[0]] = treeNode(items[0], count, inTree)
        if headerTable[items[0]][1] == None:
            headerTable[items[0]][1] = inTree.children[items[0]]
        else:
            updateHeader(headerTable[items[0]][1], inTree.children[items[0]])
    # 递归
    if len(items) > 1:
        updateFPtree(items[1::], inTree.children[items[0]], headerTable, count)
def createFPtree(dataSet, minSup=1):
    headerTable = {}
    for trans in dataSet:
        for item in trans:
            headerTable[item] = headerTable.get(item, 0) + dataSet[trans]
    for k in list(headerTable.keys()):
        if headerTable[k] < minSup:
            del(headerTable[k]) # 删除不满足最小支持度的元素
    freqItemSet = set(headerTable.keys()) # 满足最小支持度的频繁项集
    if len(freqItemSet) == 0:
        return None, None
    for k in headerTable:
        headerTable[k] = [headerTable[k], None] # element: [count, node]
    retTree = treeNode('Null Set', 1, None)
    for tranSet, count in dataSet.items():
        # dataSet:[element, count]
        localD = {}
        for item in tranSet:
            if item in freqItemSet: # 过滤,只取该样本中满足最小支持度的频繁项
                localD[item] = headerTable[item][0] # element : count
        if len(localD) > 0:
            # 根据全局频数从大到小对单样本排序
            # orderedItem = [v[0] for v in sorted(localD.iteritems(), key=lambda p:(p[1], -ord(p[0])), reverse=True)]
            orderedItem = [v[0] for v in sorted(localD.items(), key=lambda p:(p[0], int(p[1])), reverse=True)]
            # 用过滤且排序后的样本更新树
            updateFPtree(orderedItem, retTree, headerTable, count)
    return retTree, headerTable
# 回溯
def ascendFPtree(leafNode, prefixPath):
    if leafNode.parent != None:
        prefixPath.append(leafNode.name)
        ascendFPtree(leafNode.parent, prefixPath)
# 条件模式基
def findPrefixPath(basePat, myHeaderTab):
    treeNode = myHeaderTab[basePat][1] # basePat在FP树中的第一个结点
    condPats = {}
    while treeNode != None:
        prefixPath = []
        ascendFPtree(treeNode, prefixPath) # prefixPath是倒过来的,从treeNode开始到根
        if len(prefixPath) > 1:
            condPats[frozenset(prefixPath[1:])] = treeNode.count # 关联treeNode的计数
        treeNode = treeNode.nodeLink # 下一个basePat结点
    return condPats
def mineFPtree(inTree, headerTable, minSup, preFix, freqItemList):
    # 最开始的频繁项集是headerTable中的各元素
    bigL = [v[0] for v in sorted(headerTable.items(), key=lambda p:p[0])] # 根据频繁项的总频次排序
    for basePat in bigL: # 对每个频繁项
        newFreqSet = preFix.copy()
        newFreqSet.add(basePat)
        freqItemList.append(newFreqSet)
        condPattBases = findPrefixPath(basePat, headerTable) # 当前频繁项集的条件模式基
        myCondTree, myHead = createFPtree(condPattBases, minSup) # 构造当前频繁项的条件FP树
        if myHead != None:
            # print 'conditional tree for: ', newFreqSet
            # myCondTree.disp(1)
            mineFPtree(myCondTree, myHead, minSup, newFreqSet, freqItemList) # 递归挖掘条件FP树
def loadSimpDat():
    simDat = [['r','z','h','j','p'],
              ['z','y','x','w','v','u','t','s'],
              ['z'],
              ['r','x','n','o','s'],
              ['y','r','x','z','q','t','p'],
              ['y','z','x','e','q','s','t','m']]
    return simDat
def createInitSet(dataSet):
    retDict={}
    for trans in dataSet:
      key = frozenset(trans)
      if key in retDict:
          retDict[frozenset(trans)] += 1
      else:
        retDict[frozenset(trans)] = 1
    return retDict
def calSuppData(headerTable, freqItemList, total):
    suppData = {}
    for Item in freqItemList:
        # 找到最底下的结点
        Item = sorted(Item, key=lambda x:headerTable[x][0])
        base = findPrefixPath(Item[0], headerTable)
        # 计算支持度
        support = 0
        for B in base:
            if frozenset(Item[1:]).issubset(set(B)):
                support += base[B]
        # 对于根的儿子,没有条件模式基
        if len(base)==0 and len(Item)==1:
            support = headerTable[Item[0]][0]
        suppData[frozenset(Item)] = support/float(total)
    return suppData
def aprioriGen(Lk, k):
    retList = []
    lenLk = len(Lk)
    for i in range(lenLk):
        for j in range(i+1, lenLk):
            L1 = list(Lk[i])[:k-2]; L2 = list(Lk[j])[:k-2]
            L1.sort(); L2.sort()
            if L1 == L2: 
                retList.append(Lk[i] | Lk[j])
    return retList
def calcConf(freqSet, H, supportData, br1, minConf=0.7):
    prunedH = []
    for conseq in H:
        conf = supportData[freqSet] / supportData[freqSet - conseq]
        if conf >= minConf:
            print("{0} --> {1} conf:{2}".format(freqSet - conseq, conseq, conf))
            br1.append((freqSet - conseq, conseq, conf))
            prunedH.append(conseq)
    return prunedH
def rulesFromConseq(freqSet, H, supportData, br1, minConf=0.7):
    m = len(H[0])
    if len(freqSet) > m+1:
        Hmp1 = aprioriGen(H, m+1)
        Hmp1 = calcConf(freqSet, Hmp1, supportData, br1, minConf)
        if len(Hmp1)>1:
            rulesFromConseq(freqSet, Hmp1, supportData, br1, minConf)
def generateRules(freqItemList, supportData, minConf=0.7):
    bigRuleList = []
    for freqSet in freqItemList:
        H1 = [frozenset([item]) for item in freqSet]
        if len(freqSet)>1:
            rulesFromConseq(freqSet, H1, supportData, bigRuleList, minConf)
        else:
            calcConf(freqSet, H1, supportData, bigRuleList, minConf)
    return bigRuleList

fpgrowth代码案例

import fpgrowth 
import time
'''simple data'''
simDat = fpgrowth.loadSimpDat()
initSet = fpgrowth.createInitSet(simDat)
myFPtree, myHeaderTab = fpgrowth.createFPtree(initSet, 3)
myFPtree.disp()
print(fpgrowth.findPrefixPath('z', myHeaderTab))
print(fpgrowth.findPrefixPath('r', myHeaderTab))
print(fpgrowth.findPrefixPath('t', myHeaderTab))
freqItems = []
fpgrowth.mineFPtree(myFPtree, myHeaderTab, 3, set([]), freqItems)
for x in freqItems:
    print(x)
# compute support values of freqItems
suppData = fpgrowth.calSuppData(myHeaderTab, freqItems, len(simDat))
suppData[frozenset([])] = 1.0
for x,v in suppData.items():
    print(x,v)
freqItems = [frozenset(x) for x in freqItems]
fpgrowth.generateRules(freqItems, suppData)

结果

   Null Set   1
     z   5
       r   1
       y   3
         x   3
           t   3
             s   2
             r   1
     x   1
       s   1
         r   1
{}
{'r'}
{'s'}
{'x', 's'}
{'t'}
{'x', 't'}
{'y', 'x', 't'}
{'y', 'z', 'x', 't'}
{'z', 'x', 't'}
{'y', 't'}
{'y', 'z', 't'}
{'z', 't'}
{'x'}
{'y', 'x'}
{'y', 'z', 'x'}
{'z', 'x'}
{'y'}
{'y', 'z'}
{'z'}
frozenset({'r'}) 0.5
frozenset({'s'}) 0.5
frozenset({'x', 's'}) 0.5
frozenset({'t'}) 0.5
frozenset({'x', 't'}) 0.5
frozenset({'y', 'x', 't'}) 0.0
frozenset({'y', 'z', 'x', 't'}) 0.0
frozenset({'z', 'x', 't'}) 0.5
frozenset({'y', 't'}) 0.0
frozenset({'y', 'z', 't'}) 0.0
frozenset({'z', 't'}) 0.5
frozenset({'x'}) 0.5
frozenset({'y', 'x'}) 0.0
frozenset({'y', 'z', 'x'}) 0.0
frozenset({'z', 'x'}) 0.5
frozenset({'y'}) 0.5
frozenset({'y', 'z'}) 0.5
frozenset({'z'}) 0.8333333333333334
frozenset() 1.0



相关文章
|
4月前
|
存储 算法 大数据
Apriori算法和Eclat算法差异
Apriori算法和Eclat算法差异
|
5月前
|
数据可视化 算法 前端开发
基于python flask+pyecharts实现的中药数据可视化大屏,实现基于Apriori算法的药品功效关系的关联规则
本文介绍了一个基于Python Flask和Pyecharts实现的中药数据可视化大屏,该系统应用Apriori算法挖掘中药药材与功效之间的关联规则,为中医药学研究提供了数据支持和可视化分析工具。
157 2
|
6月前
|
存储 算法 大数据
Apriori算法和Eclat算法在性能上有哪些主要的差异
Apriori算法和Eclat算法在性能上有哪些主要的差异
|
6月前
|
算法 数据挖掘 数据库
|
6月前
|
数据采集 机器学习/深度学习 算法
Python基于Apriori关联规则算法实现商品零售购物篮分析
Python基于Apriori关联规则算法实现商品零售购物篮分析
|
7月前
|
机器学习/深度学习 算法 搜索推荐
【机器学习】Apriori算法在关联规则学习中的应用
【机器学习】Apriori算法在关联规则学习中的应用
120 0
|
2天前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
2天前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
|
11天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
12天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真