基于python flask+pyecharts实现的中药数据可视化大屏,实现基于Apriori算法的药品功效关系的关联规则

简介: 本文介绍了一个基于Python Flask和Pyecharts实现的中药数据可视化大屏,该系统应用Apriori算法挖掘中药药材与功效之间的关联规则,为中医药学研究提供了数据支持和可视化分析工具。

背景

在中医药学中,物品与功效之间的关联关系研究是一个非常重要的课题。传统中医药学中,很多药物都具有多种功效,而且不同药物对同一种疾病可能具有不同的疗效。因此,挖掘物品与功效之间的关联关系,可以帮助我们更加准确地认识和应用中医药宝库中的药物,从而提高中医药学的治疗效果和水平。

随着信息技术的快速发展,Python作为一种流行的编程语言,已经被广泛应用于中医药学领域。Python具有丰富的第三方库和工具,例如NumPy、Pandas、Matplotlib等,这些库和工具为中医药学数据挖掘提供了丰富的工具和支持。同时,Python Flask + Pyecharts实现了中药数据可视化大屏,为物品与功效之间的关联关系研究提供了有效的可视化工具。

基于物品的关联规则算法在中医药学中的应用研究具有重要的研究背景和意义。通过构建物品-功效对应关系表,并利用Python Flask + Pyecharts实现中药数据可视化大屏,可以实现对物品与功效之间关联关系的定量分析,为中医药学的研究提供有力的数据支持。同时,基于物品的关联规则算法还可以为中医药学挖掘关联规则提供新的思路和方法,有助于发掘中医药宝库中的更多创新和发展机会。

技术栈:

flask框架

pandas

selenium爬虫

pyecharts可视化

关联规则算法(纯算法,没有库)

前端html+js+css

前端页面设计

前端设计的关键步骤:

页面布局设计:
使用Flex布局将页面分为左侧、中间和右侧三个主要部分,每个部分包含多个子元素。
左侧和右侧各包含三个垂直排列的子元素,用于展示不同类型的数据。
中间部分用于显示地图数据,并包含一个计时器显示当前时间。

样式设计:
设置全局样式,包括页面背景色、字体颜色、间距等,确保页面整体风格统一。
设计每个数据展示框的样式,包括边框样式、高度、宽度等,使其具有辨识度。
为表格容器添加滚动条样式,确保表格数据超出容器高度时可以滚动查看。

数据填充与更新:
使用JavaScript和jQuery库实现数据的动态填充和更新,通过Ajax请求从后端获取最新数据并更新图表。
在表格部分,根据后端返回的数据动态生成表格行,并实现表格的滚动效果。

图表展示:
使用ECharts库初始化各个图表实例,并根据后端返回的数据更新图表内容。
不仅展示静态图表,还可以通过定时器定时刷新数据,实现实时数据展示。
通过以上设计,可以实现一个交互性强、信息展示清晰的气象数据可视化大屏,为用户提供直观、动态的数据分析和监控功能。

flask框架代码


@app.route("/")
def index():
    return render_template("main.html")

@app.route("/style.css")
def get_scss():
    return render_template("style.css")

@app.route("/css/<cssname>")
def get_fcss(cssname):
    return render_template("css/"+cssname)

@app.route("/js/<jsname>")
def get_JS(jsname):
    return render_template("js/"+jsname)

@app.route("/barChart")
def get_bar_chart():
    c = bar_base()
    return c.dump_options_with_quotes()

@app.route("/mapChart")
def get_map_chart():
    c = map_base()
    return c.dump_options_with_quotes()

@app.route("/blm")
def get_bar2_chart():
    c = get_HY_BAR()
    return c.dump_options_with_quotes()

关联规则算法

from __future__ import print_function
import pandas as pd
import numpy as np
from apriori import find_rule  # 导入自行编写的apriori函数

df = pd.read_csv('medicine_data.csv')
df=df[df['中药材类别(按功效划分)'].str.contains('活血', na=False)]
df['功效']=df['功效'].str.replace('。','')
data=df['功效'].str.split('、',expand=True)
print(df.info())
print('data: \n', data)
print(u'\n转换原始数据至0-1矩阵...')
# 确认数据转换为 NumPy 数组
data_array = data.values
print('data_array: \n', data_array)
print('data_array shape: ', data_array.shape)
print('data_array type: ', type(data_array))
# print('data_as_matrix: \n', data.as_matrix())
# array = np.array(data)
# a1 = array[0, :]
# print('a1: \n', a1)
# print(pd.Series(1, index=a1[pd.notna(a1)]))
# 匿名函数ct的作用是取出x中不是NAN的元素作为索引列,然后对应的值都为1。
# pd.Series()要求值的个数要么和索引的个数相等,要么只给定一个值然后按照索引的个数复制
# 转换成0-1矩阵
ct = lambda x: pd.Series(1, index=x[pd.notna(x)])
data_01matrix = data.apply(ct, axis=1).fillna(0)

print('data_01matrix: \n', data_01matrix)
print(u'\n转换完毕。')
#
support = 0.05  # 最小支持度
confidence = 0.5  # 最小置信度
ms = '---'  # 连接符,默认'--',用来区分不同元素,如A--B。需要保证原始表格中不含有该字符

# find_rule(data, support, confidence, ms).to_excel(output_path)
result = find_rule(data_01matrix, support, confidence, ms)   # 输出结果
result.reset_index(inplace=True)
print('result: \n', result)
print(result.info())
print(result.values.tolist())

运行结果:

最终大屏效果

相关文章
|
1天前
|
算法 Serverless 数据处理
从集思录可转债数据探秘:Python与C++实现的移动平均算法应用
本文探讨了如何利用移动平均算法分析集思录提供的可转债数据,帮助投资者把握价格趋势。通过Python和C++两种编程语言实现简单移动平均(SMA),展示了数据处理的具体方法。Python代码借助`pandas`库轻松计算5日SMA,而C++代码则通过高效的数据处理展示了SMA的计算过程。集思录平台提供了详尽且及时的可转债数据,助力投资者结合算法与社区讨论,做出更明智的投资决策。掌握这些工具和技术,有助于在复杂多变的金融市场中挖掘更多价值。
22 12
|
7天前
|
监控 算法 安全
内网桌面监控软件深度解析:基于 Python 实现的 K-Means 算法研究
内网桌面监控软件通过实时监测员工操作,保障企业信息安全并提升效率。本文深入探讨K-Means聚类算法在该软件中的应用,解析其原理与实现。K-Means通过迭代更新簇中心,将数据划分为K个簇类,适用于行为分析、异常检测、资源优化及安全威胁识别等场景。文中提供了Python代码示例,展示如何实现K-Means算法,并模拟内网监控数据进行聚类分析。
28 10
|
11天前
|
机器学习/深度学习 存储 算法
解锁文件共享软件背后基于 Python 的二叉搜索树算法密码
文件共享软件在数字化时代扮演着连接全球用户、促进知识与数据交流的重要角色。二叉搜索树作为一种高效的数据结构,通过有序存储和快速检索文件,极大提升了文件共享平台的性能。它依据文件名或时间戳等关键属性排序,支持高效插入、删除和查找操作,显著优化用户体验。本文还展示了用Python实现的简单二叉搜索树代码,帮助理解其工作原理,并展望了该算法在分布式计算和机器学习领域的未来应用前景。
|
25天前
|
存储 算法 安全
控制局域网上网软件之 Python 字典树算法解析
控制局域网上网软件在现代网络管理中至关重要,用于控制设备的上网行为和访问权限。本文聚焦于字典树(Trie Tree)算法的应用,详细阐述其原理、优势及实现。通过字典树,软件能高效进行关键词匹配和过滤,提升系统性能。文中还提供了Python代码示例,展示了字典树在网址过滤和关键词屏蔽中的具体应用,为局域网的安全和管理提供有力支持。
50 17
|
27天前
|
监控 算法 安全
深度洞察内网监控电脑:基于Python的流量分析算法
在当今数字化环境中,内网监控电脑作为“守城卫士”,通过流量分析算法确保内网安全、稳定运行。基于Python的流量分析算法,利用`scapy`等工具捕获和解析数据包,提取关键信息,区分正常与异常流量。结合机器学习和可视化技术,进一步提升内网监控的精准性和效率,助力企业防范潜在威胁,保障业务顺畅。本文深入探讨了Python在内网监控中的应用,展示了其实战代码及未来发展方向。
|
4月前
|
机器学习/深度学习 算法 搜索推荐
从理论到实践,Python算法复杂度分析一站式教程,助你轻松驾驭大数据挑战!
【10月更文挑战第4天】在大数据时代,算法效率至关重要。本文从理论入手,介绍时间复杂度和空间复杂度两个核心概念,并通过冒泡排序和快速排序的Python实现详细分析其复杂度。冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1);快速排序平均时间复杂度为O(n log n),空间复杂度为O(log n)。文章还介绍了算法选择、分而治之及空间换时间等优化策略,帮助你在大数据挑战中游刃有余。
143 3
|
7月前
|
机器学习/深度学习 算法 搜索推荐
从理论到实践,Python算法复杂度分析一站式教程,助你轻松驾驭大数据挑战!
【7月更文挑战第22天】在大数据领域,Python算法效率至关重要。本文深入解析时间与空间复杂度,用大O表示法衡量执行时间和存储需求。通过冒泡排序(O(n^2)时间,O(1)空间)与快速排序(平均O(n log n)时间,O(log n)空间)实例,展示Python代码实现与复杂度分析。策略包括算法适配、分治法应用及空间换取时间优化。掌握这些,可提升大数据处理能力,持续学习实践是关键。
164 1
|
8月前
|
存储 机器学习/深度学习 算法
Python算法基础教程
Python算法基础教程
49 0
|
数据采集 SQL 算法
C++、Python、数据结构与算法、计算机基础、数据库教程汇总!
C++、Python、数据结构与算法、计算机基础、数据库教程汇总!
242 0
C++、Python、数据结构与算法、计算机基础、数据库教程汇总!

热门文章

最新文章

推荐镜像

更多