面试官:你说说一条查询SQL的执行过程?

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: 为了理解这个问题,先从Mysql的架构说起,对于Mysql来说,大致可以分为3层架构。

为了理解这个问题,先从Mysql的架构说起,对于Mysql来说,大致可以分为3层架构。

第一层作为客户端和服务端的连接,连接器负责处理和客户端的连接,还有一些权限认证之类。比如客户端通用用户名密码连接到Mysql服务器,还有对于数据库表的执行权限。

第二层是核心层,基本上Mysql大部分的核心功能都在这一层,包括查询缓存、解析器、优化器之类,比如SQL解析、优化、索引选择,到最后生成执行计划。

第三层则是存储引擎了,Mysql通过执行引擎直接调用存储引擎API查询数据库中数据。

0d2c390737d2da2f18a7fc17af52c1d3.jpg通过Mysql的架构分层,我们首先就可以很清晰的了解到一个SQL的大概的执行过程。

  1. 首先客户端发送请求到服务端,建立连接。
  2. 服务端先看下查询缓存是否命中,命中就直接返回,否则继续往下执行。
  3. 接着来到解析器,进行语法分析,一些系统关键字校验,校验语法是否合规。
  4. 然后优化器进行SQL优化,比如怎么选择索引之类,然后生成执行计划。
  5. 最后执行引擎调用存储引擎API查询数据,返回结果。

这就是一个很概括性的SQL执行过程,接下来,具体到每个步骤详细说明一下。

查询缓存

如果你翻看Mysql的官方文档就会知道,查询缓存在5.7.20版本已经被弃用,并且8.0的版本已经删除了。为啥要删除,可能觉得太鸡肋了吧。

我们可以通过命令来查看查询缓存是否可用。

mysql> SHOW VARIABLES LIKE 'have_query_cache';
+------------------+-------+
| Variable_name    | Value |
+------------------+-------+
| have_query_cache | YES   |
+------------------+-------+

除此之外,查询缓存还有一些核心参数。更具体的说明可以参考官方文档。

query_cache_type:是否打开查询缓存,值为0\1\2,分别对应为OFF\ON\DEMAND,ON的话则代表开启查询缓存,但是可以通过SELECT SQL_NO_CACHE来手动禁用,DEMAND则代表只缓存以SELECT SQL_CACHE开头的SQL语句。

query_cache_limit:缓存结果大小限制,如果查询结果超过大小则不会被缓存,默认是1M大小。

query_cache_size:为查询缓存分配的内存大小,他是1024的整数倍。

query_cache_min_res_unit:查询缓存分配内存块的最小单位,默认为4KB。这是查询缓存分配内存的基本单位,即便比如查询的数据只有1个字节,也会按照最小内存单元大小来分配内存空间。

在进行SQL解析之前,系统会判断查询缓存是否打开,如果打开,就拿缓存中的查询和传入的查询比较,如果完全一样,就会从缓存中直接返回。

但是需要特别注意的是,无论大小写、空格还是注释,都会影响缓存的命中结果,也就是说必须完全一样!

比如以下的SQL大小写不同、多了空格都无法命中查询缓存。

select * from user;
SELECT * from user;
select   * from user;

解析器&预处理器

如果查询缓存未命中,就会进入正常的SQL执行环节。

首先就像我们正常的业务开发一样,第一步都是对参数的规则校验,Mysql也一样,解析器会进行词法语法分析,基于语法规则对SQL进行校验。

比如关键字是否使用正确啊,或者说关键字顺序是不是正确,比如说你把select写成了selctorder by写成了by order

如果校验OK,那么就生成一颗“解析树”。

接着预处理器就是进一步依据合法规则生成的解析树进行校验,比如表名、列名是否存在等等。

优化器

如果说解析器和预处理器是我们业务逻辑的前置校验环节,优化器就是真正的处理业务逻辑的地方。

一条查询SQL可以有N种执行方式,优化器的最终目标是找到最好的执行计划,交给执行引擎去执行。

但是实际使用中我们经常会发现,Mysql经常有选择错索引的情况,我明明有更快的索引,结果它不用,导致搞出了慢查询。

这是因为Mysql的优化器是基于成本模型的优化器,他只是基于已有的成本计算公式来选择一个成本最低的执行方式,这个执行方式不一定会是最快的,只能说大多数时候,优化器的选择比我们自己的选择更准确。

总的来说,这个优化过程太复杂了,流程大致就是下图所示,更详细的内容可以看《数据库查询优化器的艺术原理解析与SQL性能》这本书(我实在是懒得看了,吐了)。

22b0f9a20c4dda526c6ed32ce8e88a7c.jpg

执行引擎

大部分核心的事情已经被优化器处理完了,最后执行引擎只要根据生成好的执行计划查询数据返回就好了,这一步相对就挺简单了。

执行引擎只需要根据执行计划的指令调用存储引擎的API就可以了。

当然这一步如果可以缓存查询结果,那么就在这个阶段把查询结果缓存下来,然后把结果返回给客户端就可以了。

总结

一图胜千言。

140c8624b7abb9c6fbc33d09fec65253.jpg

相关文章
|
8天前
|
SQL NoSQL Java
Java使用sql查询mongodb
通过使用 MongoDB Connector for BI 和 JDBC,开发者可以在 Java 中使用 SQL 语法查询 MongoDB 数据库。这种方法对于熟悉 SQL 的团队非常有帮助,能够快速实现对 MongoDB 数据的操作。同时,也需要注意到这种方法的性能和功能限制,根据具体应用场景进行选择和优化。
33 9
|
29天前
|
SQL 存储 人工智能
Vanna:开源 AI 检索生成框架,自动生成精确的 SQL 查询
Vanna 是一个开源的 Python RAG(Retrieval-Augmented Generation)框架,能够基于大型语言模型(LLMs)为数据库生成精确的 SQL 查询。Vanna 支持多种 LLMs、向量数据库和 SQL 数据库,提供高准确性查询,同时确保数据库内容安全私密,不外泄。
102 7
Vanna:开源 AI 检索生成框架,自动生成精确的 SQL 查询
|
2月前
|
SQL 缓存 监控
大厂面试高频:4 大性能优化策略(数据库、SQL、JVM等)
本文详细解析了数据库、缓存、异步处理和Web性能优化四大策略,系统性能优化必知必备,大厂面试高频。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:4 大性能优化策略(数据库、SQL、JVM等)
|
2月前
|
SQL Java
使用java在未知表字段情况下通过sql查询信息
使用java在未知表字段情况下通过sql查询信息
39 8
|
2月前
|
SQL 安全 PHP
PHP开发中防止SQL注入的方法,包括使用参数化查询、对用户输入进行过滤和验证、使用安全的框架和库等,旨在帮助开发者有效应对SQL注入这一常见安全威胁,保障应用安全
本文深入探讨了PHP开发中防止SQL注入的方法,包括使用参数化查询、对用户输入进行过滤和验证、使用安全的框架和库等,旨在帮助开发者有效应对SQL注入这一常见安全威胁,保障应用安全。
63 4
|
2月前
|
SQL 监控 关系型数据库
SQL语句当前及历史信息查询-performance schema的使用
本文介绍了如何使用MySQL的Performance Schema来获取SQL语句的当前和历史执行信息。Performance Schema默认在MySQL 8.0中启用,可以通过查询相关表来获取详细的SQL执行信息,包括当前执行的SQL、历史执行记录和统计汇总信息,从而快速定位和解决性能瓶颈。
|
2月前
|
SQL 存储 缓存
如何优化SQL查询性能?
【10月更文挑战第28天】如何优化SQL查询性能?
168 10
|
2月前
|
SQL 关系型数据库 MySQL
|
4月前
|
关系型数据库 MySQL 网络安全
5-10Can't connect to MySQL server on 'sh-cynosl-grp-fcs50xoa.sql.tencentcdb.com' (110)")
5-10Can't connect to MySQL server on 'sh-cynosl-grp-fcs50xoa.sql.tencentcdb.com' (110)")
|
6月前
|
SQL 存储 监控
SQL Server的并行实施如何优化?
【7月更文挑战第23天】SQL Server的并行实施如何优化?
139 13