请问你知道分布式系统设计模式的分割日志思想么?

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: 请问你知道分布式系统设计模式的分割日志思想么?

分割日志(Segmented Log)


将大文件切分为更容易处理的多个更小的文件。


问题背景


单一的日志文件可能会增长到很大,并且在程序启动时读取从而成为性能瓶颈。老的日志需要定时清理,但是对于一个大文件进行清理操作很费劲。


解决方案


将单一日志切分为多个,日志在达到一定大小时,会切换到新文件继续写。

//写入日志
public Long writeEntry(WALEntry entry) {
    //判断是否需要另起新文件
    maybeRoll();
    //写入文件
    return openSegment.writeEntry(entry);
}
private void maybeRoll() {
    //如果当前文件大小超过最大日志文件大小
    if (openSegment.
            size() >= config.getMaxLogSize()) {
        //强制刷盘
        openSegment.flush();
        //存入保存好的排序好的老日志文件列表
        sortedSavedSegments.add(openSegment);
        //获取文件最后一个日志id
        long lastId = openSegment.getLastLogEntryId();
        //根据日志id,另起一个新文件,打开
        openSegment = WALSegment.open(lastId, config.getWalDir());
    }
}

如果日志做了切分,那么需要快速以某个日志位置(或者日志序列号)定位到某个文件的机制。可以通过两种方式实现:

  • 每一个日志切分文件的名称都是包含特定开头以及日志位置偏移量(或者日志序列号)
  • 每一个日志序列号包含文件名称以及 transaction 偏移。
//创建文件名称
public static String createFileName(Long startIndex) {
    //特定日志前缀_起始位置_日志后缀
    return logPrefix + "_" + startIndex + "_" + logSuffix;
}
//从文件名称中提取日志偏移量
public static Long getBaseOffsetFromFileName(String fileName) {
    String[] nameAndSuffix = fileName.split(logSuffix);
    String[] prefixAndOffset = nameAndSuffix[0].split("_");
    if (prefixAndOffset[0].equals(logPrefix))
        return Long.parseLong(prefixAndOffset[1]);
    return -1l;
}

在文件名包含这种信息之后,读操作就分为两步:

  1. 给定一个偏移(或者 transaction id),获取到大于这个偏移日志所在文件
  2. 从文件中读取所有大于这个偏移的日志
//给定偏移量,读取所有日志
public List<WALEntry> readFrom(Long startIndex) {
    List<WALSegment> segments = getAllSegmentsContainingLogGreaterThan(startIndex);
    return readWalEntriesFrom(startIndex, segments);
}
//给定偏移量,获取所有包含大于这个偏移量的日志文件
private List<WALSegment> getAllSegmentsContainingLogGreaterThan(Long startIndex) {
    List<WALSegment> segments = new ArrayList<>();
    //Start from the last segment to the first segment with starting offset less than startIndex
    //This will get all the segments which have log entries more than the startIndex
    for (int i = sortedSavedSegments.size() - 1; i >= 0; i--) {
        WALSegment walSegment = sortedSavedSegments.get(i);
        segments.add(walSegment);
        if (walSegment.getBaseOffset() <= startIndex) {
            break; // break for the first segment with baseoffset less than startIndex
        }
    }
    if (openSegment.getBaseOffset() <= startIndex) {
        segments.add(openSegment);
    }
    return segments;
}


举例


基本所有主流 MQ 的存储,例如 RocketMQ,Kafka 还有 Pulsar 的底层存储 BookKeeper,都运用了分段日志。

RocketMQ:


微信图片_20220625124007.jpg


Kafka:


微信图片_20220625124037.jpg


Pulsar存储实现BookKeeper:


微信图片_20220625124054.jpg


另外,基于一致性协议 Paxos 或者 Raft 的存储,一般会采用分段日志,例如 Zookeeper 以及 TiDB。


相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
相关文章
|
1月前
|
存储 数据采集 分布式计算
Hadoop-17 Flume 介绍与环境配置 实机云服务器测试 分布式日志信息收集 海量数据 实时采集引擎 Source Channel Sink 串行复制负载均衡
Hadoop-17 Flume 介绍与环境配置 实机云服务器测试 分布式日志信息收集 海量数据 实时采集引擎 Source Channel Sink 串行复制负载均衡
44 1
|
2月前
|
设计模式 SQL 安全
PHP中的设计模式:单例模式的深入探索与实践在PHP的编程实践中,设计模式是解决常见软件设计问题的最佳实践。单例模式作为设计模式中的一种,确保一个类只有一个实例,并提供全局访问点,广泛应用于配置管理、日志记录和测试框架等场景。本文将深入探讨单例模式的原理、实现方式及其在PHP中的应用,帮助开发者更好地理解和运用这一设计模式。
在PHP开发中,单例模式通过确保类仅有一个实例并提供一个全局访问点,有效管理和访问共享资源。本文详细介绍了单例模式的概念、PHP实现方式及应用场景,并通过具体代码示例展示如何在PHP中实现单例模式以及如何在实际项目中正确使用它来优化代码结构和性能。
45 2
|
2月前
|
运维 NoSQL Java
SpringBoot接入轻量级分布式日志框架GrayLog技术分享
在当今的软件开发环境中,日志管理扮演着至关重要的角色,尤其是在微服务架构下,分布式日志的统一收集、分析和展示成为了开发者和运维人员必须面对的问题。GrayLog作为一个轻量级的分布式日志框架,以其简洁、高效和易部署的特性,逐渐受到广大开发者的青睐。本文将详细介绍如何在SpringBoot项目中接入GrayLog,以实现日志的集中管理和分析。
225 1
|
3月前
|
消息中间件 JSON 自然语言处理
Python多进程日志以及分布式日志的实现方式
python日志模块logging支持多线程,但是在多进程下写入日志文件容易出现下面的问题: PermissionError: [WinError 32] 另一个程序正在使用此文件,进程无法访问。 也就是日志文件被占用的情况,原因是多个进程的文件handler对日志文件进行操作产生的。
|
3月前
|
存储 监控 数据可视化
性能监控之JMeter分布式压测轻量日志解决方案
【8月更文挑战第11天】性能监控之JMeter分布式压测轻量日志解决方案
94 0
性能监控之JMeter分布式压测轻量日志解决方案
|
3月前
|
存储 消息中间件 缓存
Waltz 一种分布式预写日志系统
Waltz 一种分布式预写日志系统
45 1
|
4月前
|
消息中间件 JSON 自然语言处理
python多进程日志以及分布式日志的实现方式
python日志在多进程环境下的问题 python日志模块logging支持多线程,但是在多进程下写入日志文件容易出现下面的问题: PermissionError: [WinError 32] 另一个程序正在使用此文件,进程无法访问。 也就是日志文件被占用的情况,原因是多个进程的文件handler对日志文件进行操作产生的。
|
1月前
|
NoSQL Java Redis
太惨痛: Redis 分布式锁 5个大坑,又大又深, 如何才能 避开 ?
Redis分布式锁在高并发场景下是重要的技术手段,但其实现过程中常遇到五大深坑:**原子性问题**、**连接耗尽问题**、**锁过期问题**、**锁失效问题**以及**锁分段问题**。这些问题不仅影响系统的稳定性和性能,还可能导致数据不一致。尼恩在实际项目中总结了这些坑,并提供了详细的解决方案,包括使用Lua脚本保证原子性、设置合理的锁过期时间和使用看门狗机制、以及通过锁分段提升性能。这些经验和技巧对面试和实际开发都有很大帮助,值得深入学习和实践。
太惨痛: Redis 分布式锁 5个大坑,又大又深, 如何才能 避开 ?
|
3月前
|
NoSQL Redis
基于Redis的高可用分布式锁——RedLock
这篇文章介绍了基于Redis的高可用分布式锁RedLock的概念、工作流程、获取和释放锁的方法,以及RedLock相比单机锁在高可用性上的优势,同时指出了其在某些特殊场景下的不足,并提到了ZooKeeper作为另一种实现分布式锁的方案。
110 2
基于Redis的高可用分布式锁——RedLock
|
7天前
|
NoSQL Redis
Redis分布式锁如何实现 ?
Redis分布式锁通过SETNX指令实现,确保仅在键不存在时设置值。此机制用于控制多个线程对共享资源的访问,避免并发冲突。然而,实际应用中需解决死锁、锁超时、归一化、可重入及阻塞等问题,以确保系统的稳定性和可靠性。解决方案包括设置锁超时、引入Watch Dog机制、使用ThreadLocal绑定加解锁操作、实现计数器支持可重入锁以及采用自旋锁思想处理阻塞请求。
40 16