技术好文:Redis分布式锁的正确实现方式

简介: 技术好文:Redis分布式锁的正确实现方式

前言


分布式锁一般有三种实现方式:1. 数据库乐观锁;2. 基于Redis的分布式锁;3. 基于ZooKeeper的分布式锁。本篇博客将介绍第二种方式,基于Redis实现分布式锁。虽然网上已经有各种介绍Redis分布式锁实现的博客,然而他们的实现却有着各种各样的问题,为了避免误人子弟,本篇博客将详细介绍如何正确地实现Redis分布式锁。


可靠性


首先,为了确保分布式锁可用,我们至少要确保锁的实现同时满足以下四个条件:


互斥性。在任意时刻,只有一个客户端能持有锁。


不会发生死锁。即使有一个客户端在持有锁的期间崩溃而没有主动解锁,也能保证后续其他客户端能加锁。


具有容错性。只要大部分的Redis节点正常运行,客户端就可以加锁和解锁。


解铃还须系铃人。加锁和解锁必须是同一个客户端,客户端自己不能把别人加的锁给解了。


代码实现


组件依赖


首先我们要通过Maven引入Jedis开源组件,在pom.xml文件加入下面的代码:


redis.clients


jedis


2.9.0


加锁代码


正确姿势


Talk is cheap, show me the code。先展示代码,再带大家慢慢解释为什么这样实现:


public class RedisTool {


private static final String LOCK_SUCCESS = "OK";


private static final String SET_IF_NOT_EXIST = "NX";


private static final String SET_WITH_EXPIRE_TIME = "PX";


/


尝试获取分布式锁


@param jedis Redis客户端


@param lockKey 锁


@param requestId 请求标识


@param expireTime 超期时间


@return 是否获取成功


*/


public static boolean tryGetDistributedLock(Jedis jedis, String lockKey, String requestId, int expireTime) {


String result = jedis.set(lockKey, requestId, SET_IF_NOT_EXIST, SET_WITH_EXPIRE_TIME, expireTime);


if (LOCK_SUCCESS.equals(result)) {


return true;


}


return false;


}


}


//代码参考:https://weibo.com/u/7929146827

可以看到,我们加锁就一行代码:jedis.set(String key, String value, String nxxx, String expx, int time),这个set()方法一共有五个形参:


第一个为key,我们使用key来当锁,因为key是唯一的。


第二个为value,我们传的是requestId,很多童鞋可能不明白,有key作为锁不就够了吗,为什么还要用到value?原因就是我们在上面讲到可靠性时,分布式锁要满足第四个条件解铃还须系铃人,通过给value赋值为requestId,我们就知道这把锁是哪个请求加的了,在解锁的时候就可以有依据。requestId可以使用UUID.randomUUID().toString()方法生成。


第三个为nxxx,这个参数我们填的是NX,意思是SET IF NOT EXIST,即当key不存在时,我们进行set操作;若key已经存在,则不做任何操作;


第四个为expx,这个参数我们传的是PX,意思是我们要给这个key加一个过期的设置,具体时间由第五个参数决定。


第五个为time,与第四个参数相呼应,代表key的过期时间。


总的来说,执行上面的set()方法就只会导致两种结果:1. 当前没有锁(key不存在),那么就进行加锁操作,并对锁设置个有效期,同时value表示加锁的客户端。2. 已有锁存在,不做任何操作。


心细的童鞋就会发现了,我们的加锁代码满足我们可靠性里描述的三个条件。首先,set()加入了NX参数,可以保证如果已有key存在,则函数不会调用成功,也就是只有一个客户端能持有锁,满足互斥性。其次,由于我们对锁设置了过期时间,即使锁的持有者后续发生崩溃而没有解锁,锁也会因为到了过期时间而自动解锁(即key被删除),不会发生死锁。最后,因为我们将value赋值为requestId,代表加锁的客户端请求标识,那么在客户端在解锁的时候就可以进行校验是否是同一个客户端。由于我们只考虑Redis单机部署的场景,所以容错性我们暂不考虑。


错误示例1


比较常见的错误示例就是使用jedis.setnx()和jedis.expire()组合实现加锁,代码如下:


public static void wrongGetLock1(Jedis jedis, String lockKey, String requestId, int expireTime) {


Long result = jedis.setnx(lockKey, requestId);


if (result == 1) {


// 若在这里程序突然崩溃,则无法设置过期时间,将发生死锁


jedis.expire(lockKey, expireTime);


}


setnx()方法作用就是SET IF NOT EXIST,expire()方法就是给锁加一个过期时间。乍一看好像和前面的set()方法结果一样,然而由于这是两条Redis命令,不具有原子性,如果程序在执行完setnx()之后突然崩溃,导致锁没有设置过期时间。那么将会发生死锁。网上之所以有人这样实现,是因为低版本的jedis并不支持多参数的set()方法。


错误示例2


public static boolean wrongGetLock2(Jedis jedis, String lockKey, int expireTime) {


long expires = System.currentTimeMillis() + expireTime;


String expiresStr = String.valueOf(expires);


// 如果当前锁不存在,返回加锁成功


if (jedis.setnx(lockKey, expiresStr) == 1) {


return true;


}


// 如果锁存在,获取锁的过期时间


String currentValueStr = jedis.get(lockKey);


if (currentValueStr != null && Long.parseLong(currentValueStr) [span style="color: rgba(0, 0, 0, 1)"> System.currentTimeMillis()) {


// 锁已过期,获取上一个锁的过期时间,并设置现在锁的过期时间


String oldValueStr = jedis.getSet(lockKey, expiresStr);


if (oldValueStr != null && oldValueStr.equals(currentValueStr)) {


// 考虑多线程并发的情况,只有一个线程的设置值和当前值相同,它才有权利加锁


return true;


}


}


// 其他情况,一律返回加锁失败


return false;


}


这一种错误示例就比较难以发现问题,而且实现也比较复杂。实现思路:使用jedis.setnx()命令实现加锁,其中key是锁,value是锁的过期时间。执行过程:1. 通过setnx()方法尝试加锁,如果当前锁不存在,返回加锁成功。2. 如果锁已经存在则获取锁的过期时间,和当前时间比较,如果锁已经过期,则设置新的过期时间,返回加锁成功。代码如下:


那么这段代码问题在哪里?1. 由于是客户端自己生成过期时间,所以需要强制要求分布式下每个客户端的时间必须同步。 2. 当锁过期的时候,如果多个客户端同时执行jedis.getSet()方法,那么虽然最终只有一个客户端可以加锁,但是这个客户端的锁的过期时间可能被其他客户端覆盖。3. 锁不具备拥有者标识,即任何客户端都可以解锁。


解锁代码


正确姿势


还是先展示代码,再带大家慢慢解释为什么这样实现:


public class RedisTool {


private static final Long RELEASE_SUCCESS = 1L;


/


释放分布式锁


@param jedis Redis客户端


@param lockKey 锁


@param requestId 请求标识


@return 是否释放成功


/


public static boolean releaseDistributedLock(Jedis jedis, String lockKey, String requestId) {


String script = "if redis.call('get', KEYS【1】) == ARGV【1】 then return redis.call('del', KEYS【1】) else return 0 end";


Object result = jedis.eval(script, Collections.singletonList(lockKey), Collections.singletonList(requestId));


if (RELEASE_SUCCESS.equals(result)) {


return true;


}


return false;


}


//代码参考:https://weibo.com/u/7929146827

可以看到,我们解锁只需要两行代码就搞定了!第一行代码,我们写了一个简单的Lua脚本代码,上一次见到这个编程语言还是在《黑客与画家》里,没想到这次居然用上了。第二行代码,我们将Lua代码传到jedis.eval()方法里,并使参数KEYS【1】赋值为lockKey,ARGV【1】赋值为requestId。eval()方法是将Lua代码交给Redis服务端执行。


那么这段Lua代码的功能是什么呢?其实很简单,首先获取锁对应的value值,检查是否与requestId相等,如果相等则删除锁(解锁)。那么为什么要使用Lua语言来实现呢?因为要确保上述操作是原子性的。关于非原子性会带来什么问题,可以阅读【解锁代码-错误示例2】 。那么为什么执行eval()方法可以确保原子性,源于Redis的特性,下面是官网对eval命令的部分解释:


简单来说,就是在eval命令执行Lua代码的时候,Lua代码将被当成一个命令去执行,并且直到eval命令执行完成,Redis才会执行其他命令。


错误示例1


最常见的解锁代码就是直接使用jedis.del()方法删除锁,这种不先判断锁的拥有者而直接解锁的方式,会导致任何客户端都可以随时进行解锁,即使这把锁不是它的。


public static void wrongReleaseLock1(Jedis jedis, String lockKey) {


jedis.del(lockKey);


}


错误示例2


这种解锁代码乍一看也是没问题,甚至我之前也差点这样实现,与正确姿势差不多,唯一区别的是分成两条命令去执行,代码如下:


public static void wrongReleaseLock2(Jedis jedis, String lockKey, String requestId) {


// 判断加锁与解锁是不是同一个客户端


if (requestId.equals(jedis.get(lockKey))) {


// 若在此时,这把锁突然不是这个客户端的,则会误解锁


jedis.del(lockKey);


}


}


如代码注释,问题在于如果调用jedis.del()方法的时候,这把锁已经不属于当前客户端的时候会解除他人加的锁。那么是否真的有这种场景?答案是肯定的,比如客户端A加锁,一段时间之后客户端A解锁,在执行jedis.del()之前,锁突然过期了,此时客户端B尝试加锁成功,然后客户端A再执行del()方法,则将客户端B的锁给解除了。


总结


本文主要介绍了如何使用Java代码正确实现Redis分布式锁,对于加锁和解锁也分别给出了两个比较经典的错误示例。其实想要通过Redis实现分布式锁并不难,只要保证能满足可靠性里的四个条件。互联网虽然给我们带来了方便,只要有问题就可以google,然而网上的答案一定是对的吗?其实不然,所以我们更应该时刻保持着质疑精神,多想多验证。


如果你的项目中Redis是多机部署的,那么可以尝试使用Redisson实现分布式锁,这是Redis官方提供的Java组件,链接在参考阅读章节已经给出。

相关文章
|
3月前
|
负载均衡 测试技术 调度
大模型分布式推理:张量并行与流水线并行技术
本文深入探讨大语言模型分布式推理的核心技术——张量并行与流水线并行。通过分析单GPU内存限制下的模型部署挑战,详细解析张量并行的矩阵分片策略、流水线并行的阶段划分机制,以及二者的混合并行架构。文章包含完整的分布式推理框架实现、通信优化策略和性能调优指南,为千亿参数大模型的分布式部署提供全面解决方案。
916 4
|
5月前
|
存储 负载均衡 NoSQL
【赵渝强老师】Redis Cluster分布式集群
Redis Cluster是Redis的分布式存储解决方案,通过哈希槽(slot)实现数据分片,支持水平扩展,具备高可用性和负载均衡能力,适用于大规模数据场景。
437 2
|
5月前
|
存储 缓存 NoSQL
【📕分布式锁通关指南 12】源码剖析redisson如何利用Redis数据结构实现Semaphore和CountDownLatch
本文解析 Redisson 如何通过 Redis 实现分布式信号量(RSemaphore)与倒数闩(RCountDownLatch),利用 Lua 脚本与原子操作保障分布式环境下的同步控制,帮助开发者更好地理解其原理与应用。
388 6
|
4月前
|
消息中间件 监控 Java
Apache Kafka 分布式流处理平台技术详解与实践指南
本文档全面介绍 Apache Kafka 分布式流处理平台的核心概念、架构设计和实践应用。作为高吞吐量、低延迟的分布式消息系统,Kafka 已成为现代数据管道和流处理应用的事实标准。本文将深入探讨其生产者-消费者模型、主题分区机制、副本复制、流处理API等核心机制,帮助开发者构建可靠、可扩展的实时数据流处理系统。
486 4
|
4月前
|
NoSQL Java 调度
分布式锁与分布式锁使用 Redis 和 Spring Boot 进行调度锁(不带 ShedLock)
分布式锁是分布式系统中用于同步多节点访问共享资源的机制,防止并发操作带来的冲突。本文介绍了基于Spring Boot和Redis实现分布式锁的技术方案,涵盖锁的获取与释放、Redis配置、服务调度及多实例运行等内容,通过Docker Compose搭建环境,验证了锁的有效性与互斥特性。
353 0
分布式锁与分布式锁使用 Redis 和 Spring Boot 进行调度锁(不带 ShedLock)
|
3月前
|
机器学习/深度学习 监控 PyTorch
68_分布式训练技术:DDP与Horovod
随着大型语言模型(LLM)规模的不断扩大,从早期的BERT(数亿参数)到如今的GPT-4(万亿级参数),单卡训练已经成为不可能完成的任务。分布式训练技术应运而生,成为大模型开发的核心基础设施。2025年,分布式训练技术已经发展到相当成熟的阶段,各种优化策略和框架不断涌现,为大模型训练提供了强大的支持。
|
4月前
|
JSON 监控 Java
Elasticsearch 分布式搜索与分析引擎技术详解与实践指南
本文档全面介绍 Elasticsearch 分布式搜索与分析引擎的核心概念、架构设计和实践应用。作为基于 Lucene 的分布式搜索引擎,Elasticsearch 提供了近实时的搜索能力、强大的数据分析功能和可扩展的分布式架构。本文将深入探讨其索引机制、查询 DSL、集群管理、性能优化以及与各种应用场景的集成,帮助开发者构建高性能的搜索和分析系统。
366 0
|
4月前
|
缓存 NoSQL 关系型数据库
Redis缓存和分布式锁
Redis 是一种高性能的键值存储系统,广泛用于缓存、消息队列和内存数据库。其典型应用包括缓解关系型数据库压力,通过缓存热点数据提高查询效率,支持高并发访问。此外,Redis 还可用于实现分布式锁,解决分布式系统中的资源竞争问题。文章还探讨了缓存的更新策略、缓存穿透与雪崩的解决方案,以及 Redlock 算法等关键技术。
|
6月前
|
存储 缓存 NoSQL
Redis核心数据结构与分布式锁实现详解
Redis 是高性能键值数据库,支持多种数据结构,如字符串、列表、集合、哈希、有序集合等,广泛用于缓存、消息队列和实时数据处理。本文详解其核心数据结构及分布式锁实现,帮助开发者提升系统性能与并发控制能力。
|
10月前
|
数据采集 存储 数据可视化
分布式爬虫框架Scrapy-Redis实战指南
本文介绍如何使用Scrapy-Redis构建分布式爬虫系统,采集携程平台上热门城市的酒店价格与评价信息。通过代理IP、Cookie和User-Agent设置规避反爬策略,实现高效数据抓取。结合价格动态趋势分析,助力酒店业优化市场策略、提升服务质量。技术架构涵盖Scrapy-Redis核心调度、代理中间件及数据解析存储,提供完整的技术路线图与代码示例。
1090 0
分布式爬虫框架Scrapy-Redis实战指南