《NLTK基础教程——用NLTK和Python库构建机器学习应用》——导读

本文涉及的产品
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_基础版,每接口每天50万次
NLP自然语言处理_高级版,每接口累计50万次
简介:

370cccfecfe98e58d2b85bfb137cf2787c3ae938

前言

NLTK基础教程——用NLTK和Python库构建机器学习应用
这是一本介绍NLTK库,以及如何将该库与其他Python库搭配运用的书。NLTK是当前自然语言处理(NLP)社区中最为流行、使用最为广泛的库之一。NLTK的设计充分体现了简单的魅力。也就是说,对于大多数复杂的NLP任务,它都可以用寥寥几行代码来实现。

本书的前半部分从介绍Python和NLP开始。在这部分内容中,你将会学到一些通用的预处理技术,例如标识化处理(tokenization)、词干提取(stemming)、停用词(stop word)去除;一些专属于NPL领域的预处理技术等,如词性标注(part-of-speech tagging);以及大多数文本相关的NLP任务都会涉及的命名实体识别(Named-entity recognition,简称NER)等技术。然后,我们会逐步将焦点转到更为复杂的NLP任务上,例如语法解析(parsing)以及其他NLP应用。

本书的后半部分则将更侧重于介绍如何构建一些NLP应用,如对于文本分类,可以用NLTK搭配scikit-learn库来进行。我们还会讨论一些其他的Python库,你应该了解一下这些与文本挖掘或自然语言处理任务相关的库。另外,也会带你看看如何从网页和社交媒体中采集数据,以及如何用NLTK进行大规模的文本处理。

目录

第1章 自然语言处理简介
1.1 为什么要学习NLP
1.2 先从Python开始吧
1.3 向NLTK迈进
1.4 练习
1.5 小结

第2章 文本的歧义及其清理
2.1 何谓文本歧义
2.2 文本清理
2.3 语句分离器
2.4 标识化处理
2.5 词干提取
2.6 词形还原
2.7 停用词移除
2.8 罕见词移除
2.9 拼写纠错
2.10 练习
2.11 小结

第3章 词性标注
第4章 文本结构解析
第5章 NLP应用
第6章 文本分类
第7章 Web爬虫
第8章 NLTK与其他Python库的搭配运用
第9章 Python中的社交媒体挖掘
第10章 大规模文本挖掘

相关文章
|
1天前
|
机器学习/深度学习 人工智能 自然语言处理
解锁机器学习的新维度:元学习的算法与应用探秘
元学习作为一个重要的研究领域,正逐渐在多个应用领域展现其潜力。通过理解和应用元学习的基本算法,研究者可以更好地解决在样本不足或任务快速变化的情况下的学习问题。随着研究的深入,元学习有望在人工智能的未来发展中发挥更大的作用。
|
3天前
|
机器学习/深度学习 数据采集 运维
机器学习在网络流量预测中的应用:运维人员的智慧水晶球?
机器学习在网络流量预测中的应用:运维人员的智慧水晶球?
35 18
|
8天前
|
机器学习/深度学习 分布式计算 大数据
阿里云 EMR Serverless Spark 在微财机器学习场景下的应用
面对机器学习场景下的训练瓶颈,微财选择基于阿里云 EMR Serverless Spark 建立数据平台。通过 EMR Serverless Spark,微财突破了单机训练使用的数据规模瓶颈,大幅提升了训练效率,解决了存算分离架构下 Shuffle 稳定性和性能困扰,为智能风控等业务提供了强有力的技术支撑。
|
22天前
|
人工智能 开发者 Python
Chainlit:一个开源的异步Python框架,快速构建生产级对话式 AI 应用
Chainlit 是一个开源的异步 Python 框架,帮助开发者在几分钟内构建可扩展的对话式 AI 或代理应用,支持多种工具和服务集成。
137 9
|
23天前
|
机器学习/深度学习 安全 持续交付
让补丁管理更智能:机器学习的革命性应用
让补丁管理更智能:机器学习的革命性应用
45 9
|
1月前
|
机器学习/深度学习 数据采集 JSON
Pandas数据应用:机器学习预处理
本文介绍如何使用Pandas进行机器学习数据预处理,涵盖数据加载、缺失值处理、类型转换、标准化与归一化及分类变量编码等内容。常见问题包括文件路径错误、编码不正确、数据类型不符、缺失值处理不当等。通过代码案例详细解释每一步骤,并提供解决方案,确保数据质量,提升模型性能。
150 88
|
1月前
|
Shell 程序员 开发者
轻松搞定在Python中构建虚拟环境
本教程教你如何使用业界公认的最佳实践,创建一个完全工作的Python开发环境。虚拟环境通过隔离依赖项,避免项目间的冲突,并允许你轻松管理包版本。我们将使用Python 3的内置`venv`模块来创建和激活虚拟环境,确保不同项目能独立运行,不会相互干扰。此外,还将介绍如何检查Python版本、激活和停用虚拟环境,以及使用`requirements.txt`文件共享依赖项。 通过本教程,你将学会: - 创建和管理虚拟环境 - 避免依赖性冲突 - 部署Python应用到服务器 适合新手和希望提升开发环境管理能力的开发者。
110 2
|
1月前
|
存储 分布式计算 MaxCompute
使用PAI-FeatureStore管理风控应用中的特征
PAI-FeatureStore 是阿里云提供的特征管理平台,适用于风控应用中的离线和实时特征管理。通过MaxCompute定义和设计特征表,利用PAI-FeatureStore SDK进行数据摄取与预处理,并通过定时任务批量计算离线特征,同步至在线存储系统如FeatureDB或Hologres。对于实时特征,借助Flink等流处理引擎即时分析并写入在线存储,确保特征时效性。模型推理方面,支持EasyRec Processor和PAI-EAS推理服务,实现高效且灵活的风险控制特征管理,促进系统迭代优化。
62 6
|
1月前
|
机器学习/深度学习 数据采集 算法
机器学习在生物信息学中的创新应用:解锁生物数据的奥秘
机器学习在生物信息学中的创新应用:解锁生物数据的奥秘
206 36
|
1月前
|
人工智能 运维 API
PAI企业级能力升级:应用系统构建、高效资源管理、AI治理
PAI平台针对企业用户在AI应用中的复杂需求,提供了全面的企业级能力。涵盖权限管理、资源分配、任务调度与资产管理等模块,确保高效利用AI资源。通过API和SDK支持定制化开发,满足不同企业的特殊需求。典型案例中,某顶尖高校基于PAI构建了融合AI与HPC的科研计算平台,实现了作业、运营及运维三大中心的高效管理,成功服务于校内外多个场景。

热门文章

最新文章

推荐镜像

更多